[1] |
Davis J M, Eloe P W, Henderson J. Triple positive solutions and dependence on higher order derivatives[J]. J Math Anal Appl, 1999, 237(2): 710-720. doi: 10.1006/jmaa.1999.6500
|
[2] |
Davis J M, Henderson J, Wong P J Y. General Lidstone problems: multiplicity and symmetry of solutions[J]. J Math Anal Appl, 2000, 251(2): 527-548. doi: 10.1006/jmaa.2000.7028
|
[3] |
Bai Z, Wang H. On positive solutions of some nonlinear fourth-order beam equations[J]. J Math Anal Appl, 2002, 270(2): 357-368. doi: 10.1016/S0022-247X(02)00071-9
|
[4] |
Graef J R, Qian C, Yang B. Multiple symmetric positive solution of a class of boundary value problem for higher order ordinary differential equations[J]. Proc Amer Math Soc, 2003, 131(2): 577-585. doi: 10.1090/S0002-9939-02-06579-6
|
[5] |
Li Y. Positive solutions of fourth-order periodic boundary problems[J]. Nonlinear Anal, 2003, 54(6): 1069-1078. doi: 10.1016/S0362-546X(03)00127-5
|
[6] |
Yao Q. Positive solutions for eigenvalue problems of fourth-order elastic beam equations[J]. Appl Math Lett, 2004, 17(2): 237-243. doi: 10.1016/S0893-9659(04)90037-7
|
[7] |
Ma R Y, Zhang J H, Fu S M. The method of lower and upper solutions for fourth-order two-point boundary value problems[J]. J Math Anal Appl, 1997, 215(2): 415-422. doi: 10.1006/jmaa.1997.5639
|
[8] |
Bai Z B. The method of lower and upper solutions for a bending of an elastic beam equation[J]. J Math Anal Appl, 2000, 248(1): 195-202. doi: 10.1006/jmaa.2000.6887
|
[9] |
Charkrit S, Kananathai A. Existence of solutions for some higher order boundary value problems[J]. J Math Anal Appl, 2007, 329(2): 830-850. doi: 10.1016/j.jmaa.2006.06.092
|
[10] |
Li F, Liang Z P,Zhang Q. Existence and multiplicity of solutions of a kind of fourth-order boundary value problem[J]. Nonlinear Anal, 2005, 62(5): 803-816.
|
[11] |
Liu X L, Li W T. Existence and multiplicity of solutions for fourth-order boundary value problems with parameters[J]. J Math Anal Appl, 2007, 327(1): 362-375. doi: 10.1016/j.jmaa.2006.04.021
|
[12] |
Li F Y,Li Y H, Liang Z P. Existence of solutions to nonlinear Hammerstein integral equations and applications[J]. J Math Anal Appl, 2006, 323(1): 209-227. doi: 10.1016/j.jmaa.2005.10.014
|
[13] |
Li F Y,Li Y H, Liang Z P. Existence and multiplicity of solutions to 2m th-order ordinary differential equations[J]. J Math Anal Appl, 2007, 331(2): 958-977. doi: 10.1016/j.jmaa.2006.09.025
|
[14] |
Han G D,Li F Y. Multiple solutions of some fourth-order boundary value problems[J]. Nonlinear Anal, 2007, 66(11): 2591-2603. doi: 10.1016/j.na.2006.03.042
|
[15] |
Han G D,Xu Z B. Multiple solutions of some nonlinear fourth-order beam equations[J]. Nonlinear Anal, 2008, 68(12): 3646-3656. doi: 10.1016/j.na.2007.04.007
|
[16] |
Yang Y,Zhang J H. Existence of solutions for some fourth-order boundary value problems with parameters[J]. Nonlinear Anal, 2008, 69(4): 1364-1375. doi: 10.1016/j.na.2007.06.035
|
[17] |
Yang Y, Zhang J H. Nontrivial solutions for some fourth order boundary value problems with parameters[J]. Nonlinear Anal, 2009, 70(11): 3966-3977. doi: 10.1016/j.na.2008.08.005
|
[18] |
Li F Y, Zhang Y B,Li Y H. Sign-changing solutions on a kind of fourth order Neumann boundary value problem[J]. J Math Anal Appl, 2008, 344(1): 417-428. doi: 10.1016/j.jmaa.2008.02.050
|
[19] |
Zhang Z T,Li S J. On sign-changing and multiple solutions of the p-Laplacian[J]. J Func Anal, 2003, 197(2): 447-468. doi: 10.1016/S0022-1236(02)00103-9
|
[20] |
Liu Z L, Sun J X. Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations[J]. J Differential Equations, 2001, 172(2): 257-299. doi: 10.1006/jdeq.2000.3867
|
[21] |
郭大钧,孙经先,抽象空间中的常微分方程[M].济南:山东科技出版社, 1989.
|
[22] |
Dancer E N, Zhang Z T. Fucik spectrum,Sigh-changing and multiple solutions for semilinear elliptic boundary value problem with resonance at infinity[J]. J Math Anal Appl, 2000, 250(2): 449-464. doi: 10.1006/jmaa.2000.6969
|
[23] |
Zhang Z T,Li X D. Sign-changing solutions and multiple solutions for semilinear elliptic boundary value problems with a retraction term nonzero at zero[J]. J Differential Equ, 2002, 178(2): 298-313. doi: 10.1006/jdeq.2001.4015
|
[24] |
Chang K C. Infinite Dimensional Morse Theory and Multiple Solution Problems[M]. Boston: Birkhuser,1993.
|