[1] |
Nicholson A J. An outline of the dynamics of animal populations[J]. Aust J Zool, 1954, 2(1): 9-65.
|
[2] |
Gurney W S C, Blythe S P, Nisbet R M. Nicholson’s blowflies revisited[J]. Nature, 1980, 287: 17-21. doi: 10.1038/287017a0
|
[3] |
Kopell N, Howard L N. Plane wave solutions to reaction-diffusion equations[J]. Stud Appl Math,1973,52: 291-328.
|
[4] |
Smith H L.Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems[M]. Providence RI:American Mathematical Society, 1995.
|
[5] |
So J W-H, Yu J S. Global attractivity and uniform persistence in Nicholson’s blowflies[J]. Diff Equ Dyn Sys, 1994,2(1): 11-18.
|
[6] |
Law R, Murrell D J, Dieckmann U. Population growth in space and time: spatial logistic equations[J]. Ecology, 2003,84(1): 252-262.
|
[7] |
Yang Y, So J W-H. Dynamics for the diffusive Nicholson’s blowflies equation[C]Chen W, Hu S.Dynamical Systems and Differential Equations. Vol II. Springfield:Southwest Missouri State University, 1998: 333-352.
|
[8] |
So J W-H, Wu J, Yang Y. Numerical Hopf bifurcation analysis on the diffusive Nicholson’s blowflies equation[J]. Appl Math Comput, 2000, 111(1): 53-69.
|
[9] |
So J W-H, Zou X. Travelling waves for the diffusive Nicholson’s blowflies equation[J]. Appl Math Comput, 2001, 122(1): 385-392. doi: 10.1016/S0096-3003(00)00055-2
|
[10] |
So J W-H, Yang Y. Dirichlet problem for the diffusive Nicholson’s blowflies equation[J]. J Differential Equations, 1998, 150(1): 317-348.
|
[11] |
张建明,彭亚红. 具有非局部反应的时滞扩散Nicholson方程的行波解[J]. 数学年刊,A辑, 2006, 27(6): 771-778.
|
[12] |
Li W T, Ruan S, Wang Z C. On the diffusive Nicholson’s blowflies equation with nonlocal delay[J]. J Nonlinear Sci, 2007, 17(6): 505-525.
|
[13] |
Lin G. Travelling waves in the Nicholson’s blowflies equation with spatio-temporal delay[J]. Appl Math Comp, 2009, 209(2): 314-332. doi: 10.1016/j.amc.2008.12.055
|
[14] |
Wang Z C, Li W T, Ruan S. Travelling wave-fronts in reaction-diffusion systems with spatio-temporal delays[J]. J Differential Equations, 2006, 222(1): 185-232.
|
[15] |
Fenichel N. Geometric singular perturbation theory for ordinary diferential equations[J]. J Differential Equations, 1979, 31(1): 53-98. doi: 10.1016/0022-0396(79)90152-9
|