留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有非局部时滞的扩散Nicholson苍蝇方程的波前解

张存华 颜向平

张存华, 颜向平. 具有非局部时滞的扩散Nicholson苍蝇方程的波前解[J]. 应用数学和力学, 2010, 31(3): 360-368. doi: 10.3879/j.issn.1000-0887.2010.03.011
引用本文: 张存华, 颜向平. 具有非局部时滞的扩散Nicholson苍蝇方程的波前解[J]. 应用数学和力学, 2010, 31(3): 360-368. doi: 10.3879/j.issn.1000-0887.2010.03.011
ZHANG Cun-hua, YAN Xiang-ping. Wavefront Solutions in the Diffusive Nicholson’s Blowflies Equation With Nonlocal Delay[J]. Applied Mathematics and Mechanics, 2010, 31(3): 360-368. doi: 10.3879/j.issn.1000-0887.2010.03.011
Citation: ZHANG Cun-hua, YAN Xiang-ping. Wavefront Solutions in the Diffusive Nicholson’s Blowflies Equation With Nonlocal Delay[J]. Applied Mathematics and Mechanics, 2010, 31(3): 360-368. doi: 10.3879/j.issn.1000-0887.2010.03.011

具有非局部时滞的扩散Nicholson苍蝇方程的波前解

doi: 10.3879/j.issn.1000-0887.2010.03.011
基金项目: 国家自然科学基金资助项目(10961017);兰州交通大学“青蓝”工程项目(QL-05-16A)的资助
详细信息
    作者简介:

    张存华(1972-),女,甘肃人,讲师(联系人.E-mail:chzhang72@163.com);颜向平(1972),男,甘肃人,副教授(E-mail:xpyan72@163.com).

  • 中图分类号: O175.26

Wavefront Solutions in the Diffusive Nicholson’s Blowflies Equation With Nonlocal Delay

  • 摘要: 研究了具有非局部时滞的扩散Nicholson苍蝇方程,其中时滞由一个定义在所有过去时间和整个一维空间区域上的积分卷积表示.当时滞核是强生成核时, 根据线性链式技巧和几何奇异扰动理论,获得了小时滞时波前解的存在性.
  • [1] Nicholson A J. An outline of the dynamics of animal populations[J]. Aust J Zool, 1954, 2(1): 9-65.
    [2] Gurney W S C, Blythe S P, Nisbet R M. Nicholson’s blowflies revisited[J]. Nature, 1980, 287: 17-21. doi: 10.1038/287017a0
    [3] Kopell N, Howard L N. Plane wave solutions to reaction-diffusion equations[J]. Stud Appl Math,1973,52: 291-328.
    [4] Smith H L.Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems[M]. Providence RI:American Mathematical Society, 1995.
    [5] So J W-H, Yu J S. Global attractivity and uniform persistence in Nicholson’s blowflies[J]. Diff Equ Dyn Sys, 1994,2(1): 11-18.
    [6] Law R, Murrell D J, Dieckmann U. Population growth in space and time: spatial logistic equations[J]. Ecology, 2003,84(1): 252-262.
    [7] Yang Y, So J W-H. Dynamics for the diffusive Nicholson’s blowflies equation[C]Chen W, Hu S.Dynamical Systems and Differential Equations. Vol II. Springfield:Southwest Missouri State University, 1998: 333-352.
    [8] So J W-H, Wu J, Yang Y. Numerical Hopf bifurcation analysis on the diffusive Nicholson’s blowflies equation[J]. Appl Math Comput, 2000, 111(1): 53-69.
    [9] So J W-H, Zou X. Travelling waves for the diffusive Nicholson’s blowflies equation[J]. Appl Math Comput, 2001, 122(1): 385-392. doi: 10.1016/S0096-3003(00)00055-2
    [10] So J W-H, Yang Y. Dirichlet problem for the diffusive Nicholson’s blowflies equation[J]. J Differential Equations, 1998, 150(1): 317-348.
    [11] 张建明,彭亚红. 具有非局部反应的时滞扩散Nicholson方程的行波解[J]. 数学年刊,A辑, 2006, 27(6): 771-778.
    [12] Li W T, Ruan S, Wang Z C. On the diffusive Nicholson’s blowflies equation with nonlocal delay[J]. J Nonlinear Sci, 2007, 17(6): 505-525.
    [13] Lin G. Travelling waves in the Nicholson’s blowflies equation with spatio-temporal delay[J]. Appl Math Comp, 2009, 209(2): 314-332. doi: 10.1016/j.amc.2008.12.055
    [14] Wang Z C, Li W T, Ruan S. Travelling wave-fronts in reaction-diffusion systems with spatio-temporal delays[J]. J Differential Equations, 2006, 222(1): 185-232.
    [15] Fenichel N. Geometric singular perturbation theory for ordinary diferential equations[J]. J Differential Equations, 1979, 31(1): 53-98. doi: 10.1016/0022-0396(79)90152-9
  • 加载中
计量
  • 文章访问数:  1908
  • HTML全文浏览量:  138
  • PDF下载量:  694
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2009-12-16
  • 刊出日期:  2010-03-15

目录

    /

    返回文章
    返回