留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于Darcy方程和Stokes方程耦合问题的非协调稳定化方法

冯民富 祁瑞生 朱瑞 鞠炳焘

冯民富, 祁瑞生, 朱瑞, 鞠炳焘. 关于Darcy方程和Stokes方程耦合问题的非协调稳定化方法[J]. 应用数学和力学, 2010, 31(3): 369-378. doi: 10.3879/j.issn.1000-0887.2010.03.012
引用本文: 冯民富, 祁瑞生, 朱瑞, 鞠炳焘. 关于Darcy方程和Stokes方程耦合问题的非协调稳定化方法[J]. 应用数学和力学, 2010, 31(3): 369-378. doi: 10.3879/j.issn.1000-0887.2010.03.012
FEGN Min-fu, QI Rui-sheng, ZHU Rui, JU Bing-tao. Stabilized Crouzeix-Raviart Element for the Coupled Stokes and Darcy Problem[J]. Applied Mathematics and Mechanics, 2010, 31(3): 369-378. doi: 10.3879/j.issn.1000-0887.2010.03.012
Citation: FEGN Min-fu, QI Rui-sheng, ZHU Rui, JU Bing-tao. Stabilized Crouzeix-Raviart Element for the Coupled Stokes and Darcy Problem[J]. Applied Mathematics and Mechanics, 2010, 31(3): 369-378. doi: 10.3879/j.issn.1000-0887.2010.03.012

关于Darcy方程和Stokes方程耦合问题的非协调稳定化方法

doi: 10.3879/j.issn.1000-0887.2010.03.012
基金项目: 四川省科技攻关课题资助项目(05GG006-006-2)
详细信息
    作者简介:

    冯民富(1964- ),男,四川南充人,教授,博士(联系人.E-mail:fm@fwtjs.cn);祁瑞生(1982- ),男,山东莱阳人(E-mail:qiruisheng123@sohu.com).

  • 中图分类号: O242.21

Stabilized Crouzeix-Raviart Element for the Coupled Stokes and Darcy Problem

  • 摘要: 对于Darcy-Stokes耦合问题,基于非协调的Crouzeix-Raviart元,提出了一种新的稳定化有限元方法.并对该方法导出了最优的误差估计.最后,用数值计算验证了所提出理论的有效性.
  • [1] Karper T, Mardal K A, Winther R. Unified finite element discretizations of coupled Darcy-Stokes flow[J]. Numer Methods Partial Differential Equation, 2008, 25(2): 311-326.
    [2] Discacciati M, Quarteroni A. Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations[C]Brezzi F.Numercial Analysis and Advanced Applications-Enumath 2001, Milan: Springer, 2003: 3-20.
    [3] Discacciati M. Domain Decomposition Method for the Coupling of Surface and Groundwater Flows[D]. PhD thesis. cole polotechnique Fédéraled de Lausanne, Switzerland, 2004.
    [4] Arbogast T, Brunson D S. A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium[J]. Computational Geosciences, 2007, 11(3): 207-218. doi: 10.1007/s10596-007-9043-0
    [5] Layton W, Schieweck F, Yotov I. Coupling fluid flow with porous media flow[J]. SIAM J Numer Anal, 2002, 40(6): 2195-2218. doi: 10.1137/S0036142901392766
    [6] Riviére B. Analysis of a discontinuous finite element method for the Stokes and Darcy problem[J]. J Sci Comput, 2005, 22(1): 479-500. doi: 10.1007/s10915-004-4147-3
    [7] Bauska I. The finite element method with Lamultiplier[J]. Numer Math, 1973, 20(1): 179-192. doi: 10.1007/BF01436561
    [8] Brezzi F. On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers[J]. RAIRO Anal Numer, 1974, 2(8): 129-151.
    [9] Rivière B, Yotov I. Locally conservative coupling of Stokes and flows[J]. SIAM J Numer Anal, 2005, 42(5): 1959-1977. doi: 10.1137/S0036142903427640
    [10] Urquiza J M, N’Dri D, Garon A, et al. Coupling Stokes and Darcy equations[J]. Appl Numer Math, 2008, 58(5): 525-538. doi: 10.1016/j.apnum.2006.12.006
    [11] Burman, Hansbo P. Stabilized Crouzeix-Raviart element for the Darcy- Stokes problem[J]. Numer Methods Partial Diffential, 2005, 21(5): 986-997. doi: 10.1002/num.20076
    [12] Crouzeix, Raviart P A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations[J].RAIRO Sér Roug, 1973, 7(3): 33-75.
    [13] Hansbo P, Larson M G. Discontinuous Galerkin and the Crouzeix-Raviart element:application to elasticity[J]. E Math Mode Num Anal, 2003, 37(1): 63-72.
    [14] Hansbo P, Larson M G. Discontinuous Galerkin method for incompressible and nearly incompressible elasticity by Nitshe’s method[J]. Comput Methods Appl Mech Engrg, 2002, 191(17/18): 1895-1908. doi: 10.1016/S0045-7825(01)00358-9
    [15] Beavers G S, Joseph D D. Boundary conditions at a naturally impermeable wall[J]. J Fluid Mech, 2003, 30(2): 197-207.
    [16] Jger W, Mikelic A. On the interface boundary condition of Beavers, Joseph, and Saffman[J]. SIAM J Appl Math, 2000, 60(14): 1111-1127. doi: 10.1137/S003613999833678X
    [17] Saffman P. On the boundary condition at the surface of a porous media[J]. Stud Appl Math, 1971, 50(1): 292-315.
    [18] Brezzi F, Bristeau M O, Franca K L, et al.A relationship between stabilized finite element methods and the Galerkin method with bubble functions[J].Comput Methods Appl Mech Engrg, 1992, 96(1): 117-129. doi: 10.1016/0045-7825(92)90102-P
    [19] Douglas J, Wang J. An absolutely stabilized finite element method for the Stokes problem[J]. Math Comp, 1989, 52(186): 495-508. doi: 10.1090/S0025-5718-1989-0958871-X
    [20] ZHOU Tian-xiao, FENG Min-fu. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes[J]. Math Comp, 1993, 60(202):531- 543. doi: 10.1090/S0025-5718-1993-1164127-6
    [21] Thoméé V. Galerkin Finite Element Method for Parabolic Problems[M]. Berlin Heidelberg: Springer-Verlag, 1997.
    [22] Brenner S. Korn’s inequalities for piecewise H1 vector fields[J]. Math Comp, 2004, 73(247): 1067-1087.
    [23] Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[M]. Berlin: Springer-Verlag, 1986.
  • 加载中
计量
  • 文章访问数:  2031
  • HTML全文浏览量:  188
  • PDF下载量:  1002
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-01-25
  • 刊出日期:  2010-03-15

目录

    /

    返回文章
    返回