留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

幂律速度运动表面上磁流体在驻点附近的滑移流动

朱婧 郑连存 张志刚

朱婧, 郑连存, 张志刚. 幂律速度运动表面上磁流体在驻点附近的滑移流动[J]. 应用数学和力学, 2010, 31(4): 411-419. doi: 10.3879/j.issn.1000-0887.2010.04.003
引用本文: 朱婧, 郑连存, 张志刚. 幂律速度运动表面上磁流体在驻点附近的滑移流动[J]. 应用数学和力学, 2010, 31(4): 411-419. doi: 10.3879/j.issn.1000-0887.2010.04.003
ZHU Jing, ZHENG Lian-cun, ZHANG Zhi-gang. Effect of the Slip Condition on the MHD Stagnation-Point Flow Over a Power-Law Stretching Sheet[J]. Applied Mathematics and Mechanics, 2010, 31(4): 411-419. doi: 10.3879/j.issn.1000-0887.2010.04.003
Citation: ZHU Jing, ZHENG Lian-cun, ZHANG Zhi-gang. Effect of the Slip Condition on the MHD Stagnation-Point Flow Over a Power-Law Stretching Sheet[J]. Applied Mathematics and Mechanics, 2010, 31(4): 411-419. doi: 10.3879/j.issn.1000-0887.2010.04.003

幂律速度运动表面上磁流体在驻点附近的滑移流动

doi: 10.3879/j.issn.1000-0887.2010.04.003
基金项目: 国家自然科学基金资助项目(50936003);北京科技大学新金属材料国家重点实验室开放课题(2009Z-02);北京科技大学冶金研究院研究基金的资助
详细信息
    作者简介:

    朱婧(1976- ),女,汉,山西人,博士生;郑连存(1957- ),教授,博士生导师(联系人.Tel:+86-10-62332891;E-mail:liancunzheng@163.com).

  • 中图分类号: O345;O11

Effect of the Slip Condition on the MHD Stagnation-Point Flow Over a Power-Law Stretching Sheet

  • 摘要: 从理论上研究了具有非线性延伸表面的磁流体在滑移流区的动量传输问题.通过Lee群变换把控制方程组转化为常微分方程组,利用同伦分析方法求得了问题的近似解析解.获得的级数解与文献中的数值解吻合得较好.另外,利用级数解分析滑移参数、磁场强度、速度比率参数、吸入喷注参数和幂律指数对流动的影响.结果显示这些参数对壁剪切力和边界层内流场有较大的影响.
  • [1] Mooney M. Explicit formulas for slip and fluidity[J]. J Rheology,1931,2(2):210-222. doi: 10.1122/1.2116364
    [2] Rao I J, Rajagopal K R. The effect of the slip condition on the flow of fluids in a channel[J]. Acta Mech,1999, 135(3): 113-126. doi: 10.1007/BF01305747
    [3] Khaled A R A, Vafai K. The effect of slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions[J]. Int J Non-Linear Mech,2004, 39(5): 795-804. doi: 10.1016/S0020-7462(03)00043-X
    [4] Wang C Y. Flow due to a stretching boundary with partial slip―an exact solution of the Navier-Stokes equations[J]. Chem Eng Sci, 2002, 57(17): 3745-3747. doi: 10.1016/S0009-2509(02)00267-1
    [5] Wang C Y. Stagnation slip flow and heat transfer on a moving plate[J]. Chem Eng Sci, 2006, 61(23): 7668-7672. doi: 10.1016/j.ces.2006.09.003
    [6] Hayat T, Masood K, Ayub M. The effect of the slip condition on flows of an Oldroyd 6-constant fluid[J]. J Comput Appl Math, 2007, 202(2): 402-413. doi: 10.1016/j.cam.2005.10.042
    [7] 乔德哈瑞 R C, 吉哈 A K. 化学反应对竖直平板边界磁流体动力学微极流体滑流的影响[J].应用数学和力学,2008,29(9):1069-1082.
    [8] Andersson H I, Rousselet M. Slip flow over a lubricated rotating disk[J]. Int J Heat Fluid Flow, 2006, 27(2): 329-335. doi: 10.1016/j.ijheatfluidflow.2005.09.002
    [9] Labropulu F, Li D. Stagnation-point flow of a second-grade fluid with slip[J]. Int J Non-Linear Mech, 2008, 43(9): 941-947. doi: 10.1016/j.ijnonlinmec.2008.07.004
    [10] 朱婧,郑连存,张欣欣.具有延伸表面的驻点流动和传热问题的级数解[J].应用数学和力学,2009,30(4):432-442.
    [11] 莫嘉琪.具有边界摄动弱非线性反应扩散方程的奇摄动[J].应用数学和力学,2008,29(8):1003-1089.
    [12] 林苏榕,莫嘉琪.超抛物型方程的非线性奇摄动问题[J].应用数学和力学,2008,29(10):1249-1253.
    [13] 苏晓红,郑连存,蒋锋.幂律流体边界层方程的近似解析解和壁摩擦因数的近似值[J].应用数学和力学,2008,29(9):1101-1106.
    [14] 梁祖峰,唐晓艳.用Adomian分解法求解分数阻尼梁的解析解[J].应用数学和力学,2007,28(2):200-209.
    [15] 张善元,刘志芳.有限变形弹性杆中三种非线性弥散波[J].应用数学和力学,2008,29(7):908-917.
    [16] Liao S J. Beyond Perturbation: Introduction to Homotopy Analysis Method[M]. Boca Raton:Chapman Hall/CRC, 2003.
    [17] Liao S J. On the homotopy analysis method for nonlinear problems[J]. Appl Math Comput, 2004, 147(2): 499-513. doi: 10.1016/S0096-3003(02)00790-7
    [18] Hayat T, Abbas Z, Sajid M. Series solution for the upper-convected Maxwell fluid over a porous stretching plate[J]. Phys Lett A, 2006, 358(6): 396-403. doi: 10.1016/j.physleta.2006.04.117
    [19] Xu H, Liao S J. Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate[J]. J Non-Newton Fluid, 2005, 129(1): 46-55. doi: 10.1016/j.jnnfm.2005.05.005
    [20] Tan Y, Xu H, Liao S J. Explicit series solution of travelling waves with a front of Fisher equation[J]. Chaos Soliton Fract, 2007, 31(2): 462-472. doi: 10.1016/j.chaos.2005.10.001
    [21] Liao S J. An optimal homotopy-analysis approach for strongly nonlinear differential equations[J]. Commun Nonlinear Sci Numer Simul, 2009. doi: 10.1016/j. cnsns. 2009. 09.002.
  • 加载中
计量
  • 文章访问数:  1561
  • HTML全文浏览量:  148
  • PDF下载量:  1228
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-25
  • 修回日期:  2010-01-26
  • 刊出日期:  2010-04-15

目录

    /

    返回文章
    返回