留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Banach空间中的广义Hη增生算子及其在变分包含中的应用

罗雪萍 黄南京

罗雪萍, 黄南京. Banach空间中的广义Hη增生算子及其在变分包含中的应用[J]. 应用数学和力学, 2010, 31(4): 472-480. doi: 10.3879/j.issn.1000-0887.2010.04.009
引用本文: 罗雪萍, 黄南京. Banach空间中的广义Hη增生算子及其在变分包含中的应用[J]. 应用数学和力学, 2010, 31(4): 472-480. doi: 10.3879/j.issn.1000-0887.2010.04.009
LUO Xue-ping, HUANG Nan-jing. Generalized H-η-Accretive Operators in Banach Spaces With an Application to Variational Inclusions[J]. Applied Mathematics and Mechanics, 2010, 31(4): 472-480. doi: 10.3879/j.issn.1000-0887.2010.04.009
Citation: LUO Xue-ping, HUANG Nan-jing. Generalized H-η-Accretive Operators in Banach Spaces With an Application to Variational Inclusions[J]. Applied Mathematics and Mechanics, 2010, 31(4): 472-480. doi: 10.3879/j.issn.1000-0887.2010.04.009

Banach空间中的广义Hη增生算子及其在变分包含中的应用

doi: 10.3879/j.issn.1000-0887.2010.04.009
基金项目: 国家自然科学基金资助项目(10671135);国家自然科学基金重点资助项目(70831005);教育部高等学校博士点基金资助项目(20060610005)
详细信息
    作者简介:

    罗雪萍(1983- ),女,四川达州人,博士生;黄南京(1962- ),男,江西石城人,教授(联系人.E-mail:nanjinghuang@homtail.com).

  • 中图分类号: O177.91;O177.99

Generalized H-η-Accretive Operators in Banach Spaces With an Application to Variational Inclusions

  • 摘要: 在Banach空间中,引入和研究了新的广义H-η-增生算子,对广义m-增生算子与H-η-单调算子提供了一个统一的框架.还定义了广义H-η-增生算子相应的预解算子,并且证明了其Lipschitz连续性.作为应用,考虑了涉及广义H-η-增生算子的一类变分包含问题的可解性.利用预解算子方法,构造了一个求解变分包含的迭代算法.在适当假设下,证明了变分包含解的存在性和由算法生成的迭代序列的收敛性.
  • [1] Ding X P, Luo C L.Perturbed proximal point algorithm for generalized quasi-variational like inclusions[J].J Comput Appl Math,2000,113(1/2): 153-165. doi: 10.1016/S0377-0427(99)00250-2
    [2] Huang N J, Fang Y P.A new class of general variational inclusions involving maximal η-monotone mappings[J].Publ Math Debrecen,2003,62(1/2): 83-98.
    [3] Fang Y P, Huang N J.H-monotone operator and resolvent operator technique for variational inclusions[J].Appl Math Comput,2003,145(2/3): 795-803. doi: 10.1016/S0096-3003(03)00275-3
    [4] Fang Y P,Huang N J,Thompson H B.A new system of variational inclusions with (H,η)-monotone operators in Hilbert spaces[J].Comput Math Appl,2005,49(2/3): 365-374. doi: 10.1016/j.camwa.2004.04.037
    [5] Verma R U. A-monotonicity and applications to nonlinear inclusion problems[J].J Appl Math Stochastic Anal,2004,17(2): 193-195.
    [6] Verma R U.Generalized nonlinear variational inclusion problems involving A-monotone mappings[J].Appl Math Lett,2006,19(9): 960-963. doi: 10.1016/j.aml.2005.11.010
    [7] Verma R U.Approximation sovability of a class of nonlinear set-valued inclusions involving (A,η)-monotone mappings[J].J Math Appl Anal,2008,337(2): 969-975. doi: 10.1016/j.jmaa.2007.01.114
    [8] Zhang Q B.Generalized implicit variational-like inclusion problems involving G-η-monotone mappings[J].Appl Math Lett,2007,20(2): 216-221. doi: 10.1016/j.aml.2006.04.002
    [9] Sun J H,Zhang L W,Xiao X T.An algorithm based on resolvent operators for solving variational inequalities in Hilbert spaces[J].Nonlinear Anal,2008,69(10): 3344-3357. doi: 10.1016/j.na.2007.09.026
    [10] Fang Y P, Huang N J.H-accretive operator and resolvent operator technique for solving variational inclusions in Banach spaces[J].Appl Math Lett,2004,17(6): 647-653. doi: 10.1016/S0893-9659(04)90099-7
    [11] Fang Y P, Huang N J.Iterative algorithm for a system of variational inclusions involving H-accretive operators in Banach spaces[J].Acta Math Hungar,2005,108(3): 183-195. doi: 10.1007/s10474-005-0219-6
    [12] Lan H Y,Cho Y J,Verma R U.Nonlinear relaxed cocoercive variational inclusions involving (A,η)-accretive mappings in Banach spaces[J].Comput Math Appl,2006,51(9/10): 1529-1538. doi: 10.1016/j.camwa.2005.11.036
    [13] Lan H Y.(A,η)-accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces[J].Appl Math Lett,2007,20(5): 571-577. doi: 10.1016/j.aml.2006.04.025
    [14] Zou Y Z, Huang N J.H(·,·)-accretive operator with an application for solving variational inclusions in Banach spaces[J].Appl Math Comput,2008,204(2): 809-816. doi: 10.1016/j.amc.2008.07.024
    [15] Zou Y Z, Huang N J.A new system of variational inclusions involving H(·,·)-accretive operator in Banach spaces[J].Appl Math Comput,2009,212(1): 135-144. doi: 10.1016/j.amc.2009.02.007
    [16] Xia F Q, Huang N J.Variational inclusions with a general H-monotone operator in Banach spaces[J].Comput Math Appl,2007,54(1): 24-30. doi: 10.1016/j.camwa.2006.10.028
    [17] Ding X P, Feng H R.Algorithm for solving a new class of generalized nonlinear implicit qusi-variational inclusions in Banach spaces[J].Appl Math Comput,2009,208(2): 547-555. doi: 10.1016/j.amc.2008.12.028
    [18] Feng H R, Ding X P.A new system of generalized nonlinear quasi-variational-like inclusions with A-monotone operators in Banach spaces[J].J Comput Appl Math,2009,225(2): 365-373. doi: 10.1016/j.cam.2008.07.048
    [19] Lou J,He X F,He Z.Iterative methods for solving a system of variational inclusions involving H-η-monotone operators in Banach spaces[J].Comput Math Appl,2008,55(7): 1832-1841. doi: 10.1016/j.camwa.2007.07.010
    [20] 丁协平,王中宝.Banach空间内涉及H-η-单调算子的集值混合拟似变分包含组[J].应用数学和力学,2009,30(1): 1-14.
    [21] Luo X P, Huang N J.A new class of variational inclusions with B-monotone operators in Banach spaces[J].J Comput Appl Math,2010,233(8): 1888-1896. doi: 10.1016/j.cam.2009.09.025
    [22] Huang N J.Nonlinear implicit quasi-variational inclusions involving generalized m-accretive mappings[J].Arch Inequal Appl,2004,2(4): 413-426.
    [23] Ahmad R, Usman F.System of generalized variational inclusions with H-accretive operators in uniformly smooth Banach spaces[J].J Comput Appl Math,2009,230(2): 424-432. doi: 10.1016/j.cam.2008.12.008
    [24] Ding X P, Feng H R.The P-step iterative algorithm for a system of generalized mixed quasi-variatonal inclusions with (A,η)-accretive operators in q-uniformly smooth Banach spaces[J].J Comput Appl Math,2008,220(1/2): 163-174. doi: 10.1016/j.cam.2007.08.003
    [25] Huang N J.Generalized nonlinear variational inclusions with noncompact valued mappings[J].Appl Math Lett,1996,9(3): 25-29.
    [26] Huang N J.Mann and Ishikawa type perturbed iterative algorithms for generalized nonlinear implicit quasi-variational inclusions[J].Comput Math Appl,1998,35(10): 1-7.
    [27] Jin M M, Liu Q K.Nonlinear quasi-variational inclusions involving generalized m-accretive mappings[J].Nonlinear Funct Anal Appl,2004,9(3): 485-494.
    [28] Lan H Y,Kim J H,Cho Y J.On a new system of nonlinear A-monotone multivalued variational inclusions[J].J Math Anal Appl,2007,327(1): 481-493. doi: 10.1016/j.jmaa.2005.11.067
    [29] Peng J W, Zhu D L.A system of variational inclusions with P-η-accretive operators[J].J Comput Appl Math,2008,216(1): 198-209. doi: 10.1016/j.cam.2007.05.003
    [30] Verma R U.On the generalized proximal point algorithm with applications to inclusion problems[J].J Indust Manag Optim,2009,5(2): 381-390. doi: 10.3934/jimo.2009.5.381
    [31] Verma R U.Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)-resolvent operator technique[J].Appl Math Lett,2006,19(12): 1409-1413. doi: 10.1016/j.aml.2006.02.014
    [32] Xia F Q, Huang N J.Algorithm for solving a new class of general mixed variational inequalities in Banach spaces[J].J Comput Appl Math,2008,220(1/2): 632-642. doi: 10.1016/j.cam.2007.09.011
    [33] Huang N J, Fang Y P.Fixed point theorem and a new system of multivalued generalized order complementarity problems[J].Positivity,2003,7(3): 257-265. doi: 10.1023/A:1026222030596
    [34] Huang N J, Fang Y P.Generalized m-accretive mappings in Banach spaces[J].J Sichuan Univ,2001,38(4): 591-592.
    [35] Petryshyn W V.A characterization of strictly convexity of Banach spaces and other uses of duality mappings[J].J Funct Anal,1970,6(2): 282-291. doi: 10.1016/0022-1236(70)90061-3
  • 加载中
计量
  • 文章访问数:  1565
  • HTML全文浏览量:  192
  • PDF下载量:  801
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-02-10
  • 刊出日期:  2010-04-15

目录

    /

    返回文章
    返回