留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具组合型非线性项与调和位势的非线性Schrodinger方程

徐润章 徐闯

徐润章, 徐闯. 具组合型非线性项与调和位势的非线性Schrodinger方程[J]. 应用数学和力学, 2010, 31(4): 491-498. doi: 10.3879/j.issn.1000-0887.2010.04.011
引用本文: 徐润章, 徐闯. 具组合型非线性项与调和位势的非线性Schrodinger方程[J]. 应用数学和力学, 2010, 31(4): 491-498. doi: 10.3879/j.issn.1000-0887.2010.04.011
XU Run-zhang, XU Chuang. Nonlinear Schrdinger Equation With Combined Power-Type Nonlinearities and Harmonic Potential[J]. Applied Mathematics and Mechanics, 2010, 31(4): 491-498. doi: 10.3879/j.issn.1000-0887.2010.04.011
Citation: XU Run-zhang, XU Chuang. Nonlinear Schrdinger Equation With Combined Power-Type Nonlinearities and Harmonic Potential[J]. Applied Mathematics and Mechanics, 2010, 31(4): 491-498. doi: 10.3879/j.issn.1000-0887.2010.04.011

具组合型非线性项与调和位势的非线性Schrodinger方程

doi: 10.3879/j.issn.1000-0887.2010.04.011
基金项目: 国家自然科学基金资助项目(10871055;10926149);黑龙江省自然科学基金资助项目(A200702A200810);黑龙江省教育厅科学技术基金资助项目(11541276);哈尔滨工程大学科学基金
详细信息
    作者简介:

    徐润章(1982- ),男,河北人,副教授,博士(联系人.E-mail:xurunzh@yahoo.com.cn).

  • 中图分类号: O175.29

Nonlinear Schrdinger Equation With Combined Power-Type Nonlinearities and Harmonic Potential

  • 摘要: 讨论了一类带有组合型非线性项与调和位势的非线性Schrdinger方程.通过构造变分问题,引入位势井方法.给出了位势井的结构和位势井深度函数的性质.得到了问题的相关集合在流之下的不变性.揭示了只要问题的初值属于位势井内或位势井外,则问题在今后所有时间内的解都存在于位势井内或井外.结合凹性方法,解的整体存在性的最佳条件被给出.
  • [1] ZHANG Jian. Sharp conditions of global existence for nonlinear Schrdinger and Klein-Gordon equations[J]. Nonlinear Analysis, 2002, 48(2):191-207. doi: 10.1016/S0362-546X(00)00180-2
    [2] Ginibre J,Velo G. On a class of nonlinear Schrdinger equations[J].Journal of Functional Analysis, 1979, 32(1):1-71. doi: 10.1016/0022-1236(79)90076-4
    [3] Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrdinger equations[J]. Journal of Mathematical Phisics, 1977, 18(9):1794-1797. doi: 10.1063/1.523491
    [4] Ogawa T, Tsutsumi Y. Blow-up of H1 solution for the nonlinear Schrdinger equation[J]. Journal of Differential Equations, 1991, 92(2):317-330. doi: 10.1016/0022-0396(91)90052-B
    [5] Ogawa T, Tsutsumi Y. Blow-up of H1 solution for the nonlinear Schrdinger equation with critical power nonlinearity[J]. Proceedings of the American Mathematical Society, 1991, 111(2):487-496.
    [6] Kenig C, Ponce G, Vega L. Small solution to nonlinear Schrdinger equations[J].Annales de l’Institut Henri Poincaré Nonlinear Analysis, 1993, 10(3):255-288.
    [7] Hayashi N, Nakamitsu K, Tsutsumi M. On solutions of the initial value problem for the nonlinear Schrdinger equations[J].Journal of Functional Analysis, 1987, 71(2):218-245. doi: 10.1016/0022-1236(87)90002-4
    [8] Hayashi N,Tsutsumi Y. Scattering theory for Hartree type equations[J]. Annales de I’institut Henri Poincaré,Physique Théorique, 1987, 46:187-213.
    [9] Ginibre J, Velo G. The global Cauchy problem for the nonlinear Schrdinger equation[J]. Annales de l’Institut Henri Poincaré Non Linear Analysis, 1985, 2(4):309-327.
    [10] Ginibre J, Ozawa T. Long range scattering for nonlinear Schrdinger and Hartree equations in space dimensions n≥2[J]. Communications in Mathematical Physic, 1993, 151(3):619-645. doi: 10.1007/BF02097031
    [11] Strauss W A. Nonlinear Wave Equations[M]. Conference Board of the Mathematical Sciences, No. 73.Providence,Rhode Island:American Mathematical Society,1989.
    [12] Cazenave T. An Introduction to Nonlinear Schrdinger Equations[M]. Textos de Metodos Matematicos, Vol 22,Rio de Janeiro: 1989.
    [13] CHEN Guang-gan, ZHANG Jian. Remarks on global existence for the supercritical nonlinear Schrdinger equation with a harmonic potential[J]. Journal of Mathematical Analysis and Applications, 2006, 320(2):591-598. doi: 10.1016/j.jmaa.2005.07.008
    [14] Fujiwara D. Remarks on convergence of the Feynman path integrals[J].Duke Mathematical Journal, 1980, 47(3):559-600. doi: 10.1215/S0012-7094-80-04734-1
    [15] Yajima K. On fundamental solution of time dependent Schrdinger equations[J]. Contemporary Mathematics, 1998, 217:49-68. doi: 10.1090/conm/217/02981
    [16] Oh Y G. Cauchy problem and Ehrenfest’s law of nonlinear Schrdinger equations with potentials[J]. Journal of Differential Equations, 1989, 81(2):255-274. doi: 10.1016/0022-0396(89)90123-X
    [17] ZHANG Jian. Stability of standing waves for nonlinear Schrdinger equations with unbounded potentials[J].Zeitschrift für Angewandte Mathematik und Physik, 2000, 51(3):498-503. doi: 10.1007/PL00001512
    [18] ZHANG Jian. Stability of attractive Bose-Einstein condensates[J].Journal of Statistical Physics, 2000, 101(3/4):731-746. doi: 10.1023/A:1026437923987
    [19] Carles Rémi. Critical nonlinear Schrdinger equation with and without harmonic potential[J]. Mathematical Models and Methods in Applied Sciences, 2002, 12(10):1513-1523. doi: 10.1142/S0218202502002215
    [20] Carles Rémi . Remarks on the nonlinear Schrdinger equation with harmonic potential[J]. Annales Henri Poincaré, 2002, 3(3/4):757-772. doi: 10.1007/s00023-002-8635-4
    [21] Tsurumi T, Wadati M. Collapses of wave functions in multidimensional nonlinear Schrdinger equations under harmonic potential[J]. Journal of the Physical Society of Japan, 1997, 66(10):3031-3034.
    [22] Shu J, Zhang J. Nonlinear Shrdinger equation with harmonic potential[J]. Journal of Mathematical Physics, 2006, 47(6):063503. doi: 10.1063/1.2209168
    [23] Tao Terence,Visan Monica,ZHANG Xiao-yi. The nonlinear Schrdinger equation with combined power-type nonlinearities[J]. Commumications in Partial Differential Equations, 2007, 32(7/9):1281-1343. doi: 10.1080/03605300701588805
    [24] SHU Ji, ZHANG Jian. Instability of standing waves for a class of nonlinear Schrdinger equations[J].Journal of Mathematical Analysis and Applications,2007, 327(2):878-890. doi: 10.1016/j.jmaa.2006.04.082
    [25] XU Run-zhang,ZHANG Wen-ying , WU Wei-ning. Nonlinear Analysis Research Trends[M].Incorporation: Nova Science Publishers,2008: 259-281.
    [26] Payne L E, Sattinger D H. Saddle points and intability of nonlinear hyperbolic equations[J]. Israel Journal of Mathematics, 1975, 22(3/4):273-303. doi: 10.1007/BF02761595
    [27] XU Run-zhang, LIU Ya-cheng. Remarks on nonlinear Schrdinger equation with harmonic potential[J]. Journal of Mathematical Physics, 2008, 49(4):043512. doi: 10.1063/1.2905154
    [28] Kato T. On nonlinear Shrdinger equations[J]. Annales de I’institut Henri Poincaré,Physique Théorique, 1987, 49(1):113-129.
    [29] Cazenave T. Semilinear Schrdinger Equations[M]. Courant Lecture Notes in Mathematics.Providence,Rhode Island: American Mathematical Society,2003.
    [30] Tsutsumi Y, Zhang J. Instability of optical solitons for two-wave interaction model in cubic nonlinear media[J]. Advances in Mathematical Sciences and Applications, 1998, 8(2):691-713.
  • 加载中
计量
  • 文章访问数:  1592
  • HTML全文浏览量:  110
  • PDF下载量:  847
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-03-12
  • 刊出日期:  2010-04-15

目录

    /

    返回文章
    返回