留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波诱导生物热传导方程的最优控制问题

P·德哈 R·德哈

P·德哈, R·德哈. 微波诱导生物热传导方程的最优控制问题[J]. 应用数学和力学, 2010, 31(4): 499-504. doi: 10.3879/j.issn.1000-0887.2010.04.012
引用本文: P·德哈, R·德哈. 微波诱导生物热传导方程的最优控制问题[J]. 应用数学和力学, 2010, 31(4): 499-504. doi: 10.3879/j.issn.1000-0887.2010.04.012
Piyanka Dhar, Ranjit Dhar. Optimal Control Problem for Bio-Heat Equation Due to Induced Microwave[J]. Applied Mathematics and Mechanics, 2010, 31(4): 499-504. doi: 10.3879/j.issn.1000-0887.2010.04.012
Citation: Piyanka Dhar, Ranjit Dhar. Optimal Control Problem for Bio-Heat Equation Due to Induced Microwave[J]. Applied Mathematics and Mechanics, 2010, 31(4): 499-504. doi: 10.3879/j.issn.1000-0887.2010.04.012

微波诱导生物热传导方程的最优控制问题

doi: 10.3879/j.issn.1000-0887.2010.04.012
详细信息
  • 中图分类号: O232

Optimal Control Problem for Bio-Heat Equation Due to Induced Microwave

  • 摘要: 用一组方程式描述均匀平板状生物组织的热传导,分析其分布式的最优控制问题,研究该生物组织在肿瘤局部特殊点上达到所必需的温度,通过控制微波,使微波辐射的诱导作用,在手术进程的总时间内,该肿瘤点达到过高热.研究在手术过程不同时间点上生物组织温度与其长度间的依赖关系,使肿瘤达到期望的温度值.
  • [1] Deng Z S, Liu J. Analytical study of bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies[J]. Trans ASME J Biomech Eng, 2002, 124(6): 638-649. doi: 10.1115/1.1516810
    [2] Dhar P K, Sinha D K. Optimal temperature control in hyperthermia by artificial surface cooling[J].Int J Systems Sci, 1989, 20(11): 2275-2282. doi: 10.1080/00207728908910303
    [3] Wagter C D. Optimization of simulated two-dimensional temperature distributions induced by multiple electromagnetic applicators[J]. IEEE Trans, Micro Theory Techni MTT, 1986, 34(5): 589-596. doi: 10.1109/TMTT.1986.1133397
    [4] Butkovsky A G. Distributed Control System[M]. New York: American Elsevier Publishing Company, 1969: 334-335.
    [5] Dhar P K, Sinha D K. Temperature control of tissue by transient-induced microwave[J]. Int J Systems Sci, 1988, 19(10): 2051-2055. doi: 10.1080/00207728808964097
    [6] Das S K, Clegg T S, Samulski T V. Computational techniques for fast hyperthermia temperature optimization[J]. Am Assoc Phy Med, 1999, 26(2): 319-328.
    [7] Kowalski M E, Behnia B, Webh A G, et al. Optimization of electro-magnetic phased arrays for hyperthermia via magnetic resonance temperature estimation[J]. IEEE Trans Biomed Eng, 2002, 49(11): 1229-1241. doi: 10.1109/TBME.2002.804602
    [8] Loulou T, Scott E P. Thermal dose optimization in hyperthermia treatments by using the conjugate gradient method[J]. Numerical Heat Transfer, Part A, 2002, 42(7): 661-683. doi: 10.1080/10407780290059756
    [9] Kowalski M E, Jin J M. A temperature-based feedback control system for electromagnetic phased arrays hyperthermia: theory and simulation[J]. Phys Med Biol, 2003, 48(5): 633-651. doi: 10.1088/0031-9155/48/5/306
    [10] Bagaria H G, Johnson D T. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment[J]. Int J of Hyperthermia, 2005, 21(1): 57-75. doi: 10.1080/02656730410001726956
    [11] Cheng K S, Stakhursky V, Craciunescu O I, et al. Fast temperature optimization of multi-source hyperthermia applicators with reduced order modelling of ‘virtual sources’[J]. Phys Med Biol, 2008, 53(6): 1619-1635. doi: 10.1088/0031-9155/53/6/008
    [12] Kuznetsov A V. Optimization problems for bio-heat equation[J]. International Communications in Heat and Mass Transfer, 2006, 33(5): 537-543. doi: 10.1016/j.icheatmasstransfer.2006.01.012
    [13] Lee E B, Markus L. Foundations of Optimal Control Theory[M]. The SIAM Series in Applied Mathematics, New York: John Wiley and Sons, 1967: 20.
    [14] Arora D, Minor M A, Mikhail S, et al. Control of thermal therapies with moving power deposition field[J]. Phys Med Biol, 2006, 51(5): 1201-1219. doi: 10.1088/0031-9155/51/5/011
  • 加载中
计量
  • 文章访问数:  1408
  • HTML全文浏览量:  80
  • PDF下载量:  809
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-17
  • 修回日期:  2009-12-16
  • 刊出日期:  2010-04-15

目录

    /

    返回文章
    返回