留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热量再循环对有机尘埃微粒燃烧的影响

M·比达巴迪 A·法纳额 A·拉哈利

M·比达巴迪, A·法纳额, A·拉哈利. 热量再循环对有机尘埃微粒燃烧的影响[J]. 应用数学和力学, 2010, 31(6): 659-669. doi: 10.3879/j.issn.1000-0887.2010.06.003
引用本文: M·比达巴迪, A·法纳额, A·拉哈利. 热量再循环对有机尘埃微粒燃烧的影响[J]. 应用数学和力学, 2010, 31(6): 659-669. doi: 10.3879/j.issn.1000-0887.2010.06.003
Mehdi Bidabadi, Aboozar Fanaee, Alireza Rahbari. Investigation Over the Recirculation Influence on the Combustion of Micro Organic Dust Particles[J]. Applied Mathematics and Mechanics, 2010, 31(6): 659-669. doi: 10.3879/j.issn.1000-0887.2010.06.003
Citation: Mehdi Bidabadi, Aboozar Fanaee, Alireza Rahbari. Investigation Over the Recirculation Influence on the Combustion of Micro Organic Dust Particles[J]. Applied Mathematics and Mechanics, 2010, 31(6): 659-669. doi: 10.3879/j.issn.1000-0887.2010.06.003

热量再循环对有机尘埃微粒燃烧的影响

doi: 10.3879/j.issn.1000-0887.2010.06.003
详细信息
  • 中图分类号: O345;O11

Investigation Over the Recirculation Influence on the Combustion of Micro Organic Dust Particles

  • 摘要: 研究了热量再循环和不同式Lewis数,对有机尘埃微粒燃烧的作用.在微型燃烧室中,由于热量再循环的影响更加显而易见,所以建立更好的模拟微型燃烧室性能的计算模型显得十分必要.为了模拟有机尘埃微粒的燃烧,假定尘埃微粒首先被气化,氧化成为一种化学结构已知的气相,接着假定该可燃气体的化学结构为甲烷.为了研究火焰的结构和求解控制方程,认为火焰结构由3个区域组成,即预热气化区、反应区和后火焰区.通过从后火焰区到预热区的排热来评价再循环现象.问题如下分步求解:首先对各区域的控制方程无量纲化;接着对各区域应用必要的边界条件和协调条件;然后按分析模型,对控制方程以及必要的边界条件和协调条件,同时进行求解.表明,再循环和不同式Lewis数,对有机尘埃微粒的燃烧特性有着显著的影响,得到不同微粒半径时的燃烧速度曲线和温度曲线等.结果与已发表的试验数据吻合.
  • [1] Cashdollar K L. Overview of dust explosibility characteristics [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3/5): 183-199. doi: 10.1016/S0950-4230(99)00039-X
    [2] Han O-S, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T. Behavior of flame propagating through lycopodium dust clouds in a vertical duct [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 449-457. doi: 10.1016/S0950-4230(99)00072-8
    [3] Han O-S, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T. A study of flame propagation mechanisms in Lycopodium dust clouds based on dust particles behaviour [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3): 153-160. doi: 10.1016/S0950-4230(00)00049-8
    [4] Kurdyumov V N, Fernandez-Tarrazo E. Lewis number effect on the propagation of premixed laminar flames in narrow open ducts [J]. Combustion and Flame, 2002, 128(4): 382-394. doi: 10.1016/S0010-2180(01)00358-3
    [5] Shamim T. The effect of Lewis number on radiative extinction and flamelet modeling[J]. International Journal of Heat and Mass Transfer, 2002, 45(6): 1249-1259. doi: 10.1016/S0017-9310(01)00223-X
    [6] Proust C. A few fundamental aspects about ignition and flame propagation in dust clouds [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 104-120. doi: 10.1016/j.jlp.2005.06.035
    [7] Proust C. Flame propagation and combustion in some dust-air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1): 89-100. doi: 10.1016/j.jlp.2005.06.026
    [8] Eckhoff R K. Differences and similarities of gas and dust explosions: a critical evaluation of the European ‘ATEX’ directives in relation to dusts [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 553-560. doi: 10.1016/j.jlp.2006.01.001
    [9] Babrauskas V. Ignition: a century of research and an assessment of our current status[J]. Journal of Fire Protection Engineering, 2007, 17(3): 165. doi: 10.1177/1042391507059434
    [10] Chakraborty S, Mukhopadhyay A, Sen S. Interaction of Lewis number and heat loss effects for a laminar premixed flame propagating in a channel[J]. International Journal of Thermal Sciences, 2008, 47(1): 84-92. doi: 10.1016/j.ijthermalsci.2007.01.025
    [11] Chen Z, Burke M P, Ju Y. Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 1253-1260. doi: 10.1016/j.proci.2008.05.060
    [12] Daou J, Matalon M. Influence of conductive heat losses on the propagation of premixed flames in channels[J]. Combustion and Flame, 2002, 128(4): 321-339. doi: 10.1016/S0010-2180(01)00362-5
    [13] Daou J, Matalon M. Flame propagation in channels: differential diffusion effects[C]3rd Joint Meeting of the US Sections of the Combustion Institute.Chicago, Illinois, 2003.
    [14] Ronney P D. Analysis of non-adiabatic heat-recirculating combustors[J]. Combustion and Flame, 2003, 135(4): 421-439. doi: 10.1016/j.combustflame.2003.07.003
    [15] Leach T, Cadou C P, Jackson G. Effect of structural heat conduction and heat loss on combustion in micro-channels[J]. Combustion Theory and Modeling, 2006, 10(1): 85-103. doi: 10.1080/13647830500277332
    [16] Leach T T, Cadou C P. The role of structural heat exchange and heat loss in the design of efficient silicon micro-combustors[J]. Proceedings of the Combustion Institute, 2004, 30(2): 2437-2444.
    [17] Deng W W, Klemic J F, Li X H, Reed M A, Gomez A. Liquid fuel microcombustor using microfabricated multiplexed electrospray sources[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2239-2246. doi: 10.1016/j.proci.2006.08.080
    [18] Bidabadi M, Rahbari A. Modeling combustion of lycopodium particles by considering the temperature difference between the gas and the particles[J]. Combustion, Explosion and Shock Waves, 2009, 45(3): 49-57.
    [19] Bidabadi M, Haghiri A, Rahbari A. The effect of Lewis and Damkohler numbers on the flame propagation through micro organic dust particles [J]. International Journal of Thermal Sciences, 2010, 49(3): 534-542. doi: 10.1016/j.ijthermalsci.2009.10.002
  • 加载中
计量
  • 文章访问数:  1326
  • HTML全文浏览量:  72
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-02-24
  • 刊出日期:  2010-06-15

目录

    /

    返回文章
    返回