留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解奇异摄动边值问题的精细积分法

富明慧 张文志 S·V· 薛申宁

富明慧, 张文志, S·V· 薛申宁. 求解奇异摄动边值问题的精细积分法[J]. 应用数学和力学, 2010, 31(11): 1382-1392. doi: 10.3879/j.issn.1000-0887.2010.11.011
引用本文: 富明慧, 张文志, S·V· 薛申宁. 求解奇异摄动边值问题的精细积分法[J]. 应用数学和力学, 2010, 31(11): 1382-1392. doi: 10.3879/j.issn.1000-0887.2010.11.011
FU Ming-hui, ZHANG Wen-zhi, Sergey V Sheshenin. Precise Integration Method for Solving Singular Perturbation Problems[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1382-1392. doi: 10.3879/j.issn.1000-0887.2010.11.011
Citation: FU Ming-hui, ZHANG Wen-zhi, Sergey V Sheshenin. Precise Integration Method for Solving Singular Perturbation Problems[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1382-1392. doi: 10.3879/j.issn.1000-0887.2010.11.011

求解奇异摄动边值问题的精细积分法

doi: 10.3879/j.issn.1000-0887.2010.11.011
基金项目: 国家自然科学基金资助项目(10672194);中俄NSFC-RFBR资助项目(10811120012)
详细信息
    作者简介:

    富明慧(1966- ),男,黑龙江人,满族,教授,博士,博士生导师(联系人.E-mail:stsfmh@mail.sysu.edu.cn).

  • 中图分类号: O175.8; O241.81

Precise Integration Method for Solving Singular Perturbation Problems

  • 摘要: 提出了一种求解一端有边界层的奇异摄动边值问题的精细方法.首先将求解区域均匀离散,由状态参量在相邻节点间的精细积分关系式确定一组代数方程,并将其写成矩阵形式.代入边界条件后,该代数方程组的系数矩阵可化为块三对角形式,针对这一特性,给出了一种高效递推消元方法.由于在离散过程中,精细积分关系式不会引入离散误差,故所提出的方法具有极高的精度.数值算例充分证明了所提出方法的有效性.
  • [1] 苏煜城. 奇异摄动中的边界层校正法[M]. 上海: 上海科学技术出版社, 1983.
    [2] Kadalbajoo M K, Reddy Y N. Asymptotic and numerical analysis of singular perturbation problems: a survey[J]. Applied Mathematics and Computation, 1989, 30(3): 223-259. doi: 10.1016/0096-3003(89)90054-4
    [3] Chawla M M. A fourth-order tridiagonal finite difference method for general non-linear two-point boundary value problems with mixed boundary conditions[J]. IMA J Appl Math, 1978, 21(1): 83-93. doi: 10.1093/imamat/21.1.83
    [4] 苏煜城, 吴启光. 奇异摄动问题数值方法引论[M]. 重庆: 重庆出版社, 1991.
    [5] Andargie A, Reddy Y N. Fitted fourth-order tridiagonal finite difference method for singular perturbation problems[J]. Applied Mathematics and Computation, 2007, 192(1): 90-100. doi: 10.1016/j.amc.2007.02.123
    [6] Stynes M, O’Riordan E. A uniformly accurate finite-element method for a singular-perturbation problem in conservative form[J]. SIAM Journal on Numerical Analysis, 1986, 23(2): 369-375. doi: 10.1137/0723024
    [7] Vigo-Aguiar J, Natesan S. A parallel boundary value technique for singularly perturbed two-point boundary value problems[J]. The Journal of Supercomputing, 2004, 27(2): 195-206. doi: 10.1023/B:SUPE.0000009322.23950.53
    [8] Reddy Y N, Chakravarthy P P. An initial-value approach solving for singularly perturbed two-point boundary value problems[J]. Applied Mathematics and Computation, 2004, 155(1): 95-110. doi: 10.1016/S0096-3003(03)00763-X
    [9] Kadalbajoo M K, Kumar D. Initial value technique for singularly perturbed two point boundary value problems using an exponentially fitted finite difference scheme[J]. Computers and Mathematics With Applications, 2009, 57(7): 1147-1156. doi: 10.1016/j.camwa.2009.01.010
    [10] Aziz T, Khan A. A spline method for second-order singularly perturbed boundary-value problems[J]. Journal of Computational and Applied Mathematics, 2002, 147(2): 445-452. doi: 10.1016/S0377-0427(02)00479-X
    [11] Tirmizi I A, Fazal-i-Haq, Siraj-ul-Islam. Non-polynomial spline solution of singularly perturbed boundary-value problems[J]. Applied Mathematics and Computation, 2008, 196(1): 6-16. doi: 10.1016/j.amc.2007.05.029
    [12] Zhong W X, Williams F W. A precise time step integration method[J]. Proceedings of the Institute of Mechanical Engineers Part C, Journal of Mechanical Engineering Science, 1994, 208(C6): 427-430. doi: 10.1243/PIME_PROC_1994_208_148_02
    [13] Lin J H, Sun D K, Zhong W X, Zhang W S. High efficiency computation of the variances of structural evolutionary random responses[J]. Shock and Vibration, 2000, 7(4): 209-216.
    [14] Gu Y X, Chen B S, Zhang H W, Grandhi R V. A sensitivity analysis method for linear and nonlinear transient heat conduction with precise time integration[J]. Structural and Multidisciplinary Optimization, 2002, 24(1): 23-37. doi: 10.1007/s00158-002-0211-5
    [15] Zhang H W, Zhang X W, Chen J S. A new algorithm for numerical solution of dynamic elastic-plastic hardening and softening problems[J]. Computers and Structures, 2003, 81(17): 1739-1749. doi: 10.1016/S0045-7949(03)00167-6
    [16] Zhong W X. Combined method for the solution of asymmetric Riccati differential equations[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(1/2): 93-102. doi: 10.1016/S0045-7825(01)00246-8
    [17] Chen B S, Tong L Y, Gu Y X. Precise time integration for linear two-point boundary value problems[J]. Applied Mathematics and Computation, 2006, 175(1): 182-211. doi: 10.1016/j.amc.2005.08.001
    [18] 富明慧, 林敬华. 一类指数矩阵函数及其应用[J]. 力学学报, 2009, 41(5): 808-814.
    [19] 谭述君, 钟万勰. 非齐次动力方程Duhamel项的精细积分法[J]. 力学学报, 2007, 39(3): 374-381.
    [20] Wang M F, Zhou X Y. Renewal precise time step integration method of structural dynamic analysis[J]. Acta Mechanica Sinica, 2004, 36(2): 191-195.
    [21] 任传波, 贺光宗, 李忠芳. 结构动力学精细积分的一种高精度通用计算格式[J]. 机械科学与技术, 2005, 24(12): 1507-1509.
    [22] 富明慧,梁华力. 一种改进的精细-龙格库塔法[J]. 中山大学学报(自然科学版), 2009, 48(5): 1-5.
  • 加载中
计量
  • 文章访问数:  1917
  • HTML全文浏览量:  139
  • PDF下载量:  839
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-09-15
  • 刊出日期:  2010-11-15

目录

    /

    返回文章
    返回