留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能梯度厚壁中空圆柱体弹性动力学平面应变响应的解析解

M·尼克哈 F·汉那瓦 E·德格罕

M·尼克哈, F·汉那瓦, E·德格罕. 功能梯度厚壁中空圆柱体弹性动力学平面应变响应的解析解[J]. 应用数学和力学, 2011, 32(2): 180-193. doi: 10.3879/j.issn.1000-0887.2011.02.006
引用本文: M·尼克哈, F·汉那瓦, E·德格罕. 功能梯度厚壁中空圆柱体弹性动力学平面应变响应的解析解[J]. 应用数学和力学, 2011, 32(2): 180-193. doi: 10.3879/j.issn.1000-0887.2011.02.006
Mehdi Nikkhah, Farhang Honarvar, Ehsan Dehghan. Elastodynamic Solution for Plane-Strain Response of Functionally Graded Thick Hollow Cylinders by Analytical Method[J]. Applied Mathematics and Mechanics, 2011, 32(2): 180-193. doi: 10.3879/j.issn.1000-0887.2011.02.006
Citation: Mehdi Nikkhah, Farhang Honarvar, Ehsan Dehghan. Elastodynamic Solution for Plane-Strain Response of Functionally Graded Thick Hollow Cylinders by Analytical Method[J]. Applied Mathematics and Mechanics, 2011, 32(2): 180-193. doi: 10.3879/j.issn.1000-0887.2011.02.006

功能梯度厚壁中空圆柱体弹性动力学平面应变响应的解析解

doi: 10.3879/j.issn.1000-0887.2011.02.006
详细信息
  • 中图分类号: O175.4

Elastodynamic Solution for Plane-Strain Response of Functionally Graded Thick Hollow Cylinders by Analytical Method

  • 摘要: 研究了边界表面受均布动压力作用的功能梯度(FGM)厚壁中空圆柱体,给出了其平面应变响应下的弹性动力学解.假设材料性能(除Poisson比外)随厚度按幂律函数变化.为了得到一个精确解,将动力径向位移分为准静力部分和动力部分,导出了每个部分的一个解析解.先由Euler方程得到准静力学部分的解,再由分离变量法和正交展开法得到动力学部分的解.在不同动荷载作用下,对不同的FGM中空圆柱体,画出径向位移和应力图,并对本方法的优点进行了讨论.该解析解适用于中空圆柱体各种组合的FGM,厚度可以是任意的,初始条件也可以是任意的,壁面上均匀分布着任意形式的动压力.
  • [1] Hirai T. Functional gradient materials[C] Brook R J. Processing of Ceramics, Part 2.Germany: VCH Verlagesgeslleschaft mbH Publishers, 1996.
    [2] Suresh S, Mortensen A. Fundamentals of Functionally Graded Materials[M]. London: IOM Communications, 1998.
    [3] Zimmerman R W, Lutz M P. Thermal stresses and effective thermal expansion in a uniformly heated functionally graded cylinder[J]. Journal of Thermal Stresses, 1999, 22(2): 177-188. doi: 10.1080/014957399280959
    [4] Jabbari M, Sohrabpour S, Eslami M R. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads[J]. International Journal of Pressure Vessels and Piping, 2002, 79(7): 493-497. doi: 10.1016/S0308-0161(02)00043-1
    [5] Shao Z S. Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length[J]. International Journal of Pressure Vessels and Piping, 2005, 82(3): 155-163. doi: 10.1016/j.ijpvp.2004.09.007
    [6] Xiang H J, Shi Z F, Zhang T T. Elastic analyses of heterogeneous hollow cylinders[J]. Mechanics Research Communications, 2006, 33(5): 681-691. doi: 10.1016/j.mechrescom.2006.01.005
    [7] Tutuncu N. Stresses in thick-walled FGM cylinders with exponentially-varying properties[J]. Engineering Structures, 2007, 29(9): 2032-2035. doi: 10.1016/j.engstruct.2006.12.003
    [8] Chen Y Z, Lin X Y. Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials[J]. Computational Materials Science, 2008, 44(2): 581-587. doi: 10.1016/j.commatsci.2008.04.018
    [9] Li X F, Peng X L. A pressurized functionally graded hollow cylinder with arbitrary varying material properties[J]. Journal of Elasticity, 2009,96(1): 81-95. doi: 10.1007/s10659-009-9199-z
    [10] Tutuncu N, Temel B. A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres[J]. Composite Structures, 2009, 91(3): 385-390. doi: 10.1016/j.compstruct.2009.06.009
    [11] Dai H L, Xiao X, Fu Y M. Analytical solutions of Stresses in functionally graded piezoelectric hollow structures[J]. Solid State Communications, 2010, 150(15/16): 763-767.
    [12] Chen Y Z, Lin X Y. An alternative numerical solution of thick-walled cylinders and spheres made of functionally graded materials[J]. Computational Materials Science, 2010, 48(3): 640-647. doi: 10.1016/j.commatsci.2010.02.033
    [13] Han X, Liu G R, Xi Z C, Lam K Y. Transient waves in a functionally graded cylinder[J]. International Journal of Solids and Structures, 2001, 38(17): 3021-3037. doi: 10.1016/S0020-7683(00)00219-5
    [14] Elmaimouni L, Lefebvre J E, Zhang V, Gryba T. Guided waves in radially graded cylinders: a polynomial approach[J]. NDT and E International, 2005, 38(5): 344-353. doi: 10.1016/j.ndteint.2004.10.004
    [15] Shakeri M, Akhlaghi M, Hoseini S M. Vibration and radial wave propagation in functionally graded thick hollow cylinder[J]. Composite Structures, 2006, 76(1/2): 174-181. doi: 10.1016/j.compstruct.2006.06.022
    [16] Bahtui A, Eslami M R. Coupled thermoelasticity of functionally graded cylindrical shells[J]. Mechanics Research Communications, 2007, 34(1): 1-18. doi: 10.1016/j.mechrescom.2005.09.003
    [17] Hoseini S M, Akhlaghi M, Shakeri M. Dynamic response and radial wave propagation velocity in thick hollow cylinders made of functionally graded materials[J]. Engineering Computations, 2007, 24(3): 288-303. doi: 10.1108/02644400710735043
    [18] Shariyat M. A nonlinear Hermitian transfinite element method for transient behavior analysis of hollow functionally graded cylinder with temperature-dependent materials under thermo-mechanical loads[J]. International Journal of Pressure Vessels and Piping, 2009, 86(4): 280-289. doi: 10.1016/j.ijpvp.2008.09.004
    [19] Asgari M, Akhlaghi M. Transient thermal stresses in two-dimensional functionally graded thick hollow cylinder with finite length[J]. Archive of Applied Mechanics, 2009, 80(4): 353-376.
    [20] Shahabian F, Hosseini S M. Stochastic dynamic analysis of a functionally graded thick hollow cylinder with uncertain material properties subjected to shock loading[J]. Materials and Design, 2010, 31(2): 894-901. doi: 10.1016/j.matdes.2009.07.040
    [21] Hosseini S M, Akhlaghi M, Shakeri M. Transient heat conduction in functionally graded thick hollow cylinder by analytical method[J]. Heat and Mass Transfer, 2007, 43(7): 669-675. doi: 10.1007/s00231-006-0158-y
    [22] Babaei M H, Chen Z T. Analytical solution for the electromechanical behavior of a rotating functionally graded piezoelectric hollow shaft[J]. Archive of Applied Mechanics, 2008, 78(7): 489-500. doi: 10.1007/s00419-007-0172-7
    [23] Yue Z Q, Yin X C. Transient plane-strain response of multilayered elastic cylinders to axisymmetric impulse[J]. Journal of Applied Mechanics, 2002, 69(6): 825-835. doi: 10.1115/1.1505625
    [24] Wang H M, Ding H J, Chen Y M. Dynamic solution of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane strain problems[J]. International Journal of Solids and Structures, 2005, 42(1): 85-102. doi: 10.1016/j.ijsolstr.2004.06.059
    [25] Bayat M, Sahari B B, Saleem M, Hamouda A M S, Reddy J N. Thermo elastic analysis of functionally graded rotating disks with temperature-dependant materials properties: uniform and variable thickness[J]. International Journal of Mechanics and Materials in Design, 2009, 5(3): 263-279. doi: 10.1007/s10999-009-9100-z
    [26] Hou P F, Wang H M, Ding H J. Analytical solution for axisymmetric plane strain electroelastic dynamics of a special non-homogenous piezoelectric hollow cylinder[J]. International Journal of Engineering Science, 2003, 41(16): 1849-1868. doi: 10.1016/S0020-7225(03)00115-0
    [27] Dai H L, Fu Y M. Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to dynamic loads[J]. International Journal of Pressure Vessels and Piping, 2007, 84(3): 132-138. doi: 10.1016/j.ijpvp.2006.10.001
    [28] Yu J G, Wu B, Chen G Q. Wave characteristics in functionally graded piezoelectric hollow cylinders[J]. Archive of Applied Mechanics, 2008, 79(9): 807-824.
    [29] Yin X C. Multiple impacts of two concentric hollow cylinders with zero clearance[J]. International Journal of Solids and Structures, 1997, 34(35/36): 4597-4616. doi: 10.1016/S0020-7683(97)00049-8
    [30] Yin X C, Wang L G. The effect of multiple impacts on the dynamics of an impact system[J]. Journal of Sound and Vibration, 1999, 228(5): 995-1015. doi: 10.1006/jsvi.1999.2439
    [31] Eringen A C, Suhubi E S. Elastodynamics[M]. Linear Theory. Vol 2. New York: Academic Press, 1975: 440-441.
    [32] Hough L A E. A Treatise on the Mathematical Theory of Elasticity[M]. New York: Dover, 1944.
    [33] Rade L, Westergren B. Mathematics Handbook for Science and Engineering[M]. 5th ed. Berlin: Springer-Verlag, 2004.
    [34] Gurtin M E. The Linear Theory of Elasticity, Mechanics of Solids[M]. 2nd ed. Berlin: Springer-Verlag, 1984: 270.
  • 加载中
计量
  • 文章访问数:  1389
  • HTML全文浏览量:  70
  • PDF下载量:  758
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-24
  • 修回日期:  2010-11-22
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回