留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微极流体在两个伸展平面之间的不稳定轴对称MHD流动

T·哈亚特 M·纳瓦兹 S·奥拜达特

T·哈亚特, M·纳瓦兹, S·奥拜达特. 微极流体在两个伸展平面之间的不稳定轴对称MHD流动[J]. 应用数学和力学, 2011, 32(3): 344-356. doi: 10.3879/j.issn.1000-0887.2011.03.010
引用本文: T·哈亚特, M·纳瓦兹, S·奥拜达特. 微极流体在两个伸展平面之间的不稳定轴对称MHD流动[J]. 应用数学和力学, 2011, 32(3): 344-356. doi: 10.3879/j.issn.1000-0887.2011.03.010
T. Hayat, M. Nawaz, S. Obaidat. Axisymmetric Magnetohydrodynamic flow of a Micropolar Fluid Between Unsteady Stretching Surfaces[J]. Applied Mathematics and Mechanics, 2011, 32(3): 344-356. doi: 10.3879/j.issn.1000-0887.2011.03.010
Citation: T. Hayat, M. Nawaz, S. Obaidat. Axisymmetric Magnetohydrodynamic flow of a Micropolar Fluid Between Unsteady Stretching Surfaces[J]. Applied Mathematics and Mechanics, 2011, 32(3): 344-356. doi: 10.3879/j.issn.1000-0887.2011.03.010

微极流体在两个伸展平面之间的不稳定轴对称MHD流动

doi: 10.3879/j.issn.1000-0887.2011.03.010
基金项目: 巴基斯坦高等教育委员会基金资助项目;沙特阿拉伯国王大学在KSU-VPP-103下的资金赞助
详细信息
  • 中图分类号: O361.3;O357.1

Axisymmetric Magnetohydrodynamic flow of a Micropolar Fluid Between Unsteady Stretching Surfaces

  • 摘要: 研究在两个径向伸展的平面之间,微极流体作随时间变化的磁流体动力学(MHD)流动.考虑了高浓度微元(n=0)和低浓度微元(n=0.5)两种情况.使用恰当的变换,将偏微分方程转换为常微分方程.用同伦分析法(HAM),对变换后的方程求解.给出不同参数下,角速度、表面摩擦因数和面应力偶系数的图形结果.
  • [1] Eringen A C. Theory of micropolar fluids[J]. J Math, 1966, 16(1): 1-18.
    [2] Gorla R S R, Mansour M A, Mohammedien A A. Combined convection in an axisymmetric stagnation flow of micropolar fluid[J]. Int J Num Meth Heat Fluid Flow, 1996, 6(4): 47-55.
    [3] Gorla R S R, Takhar H S. Boundary layer flow of micropolar fluid on rotating axisymmetric surfaces with a concentrated heat source[J]. Acta Mechanica, 1994, 105(1/4): 1-10. doi: 10.1007/BF01183937
    [4] Guram G S, Smith A C. Stagnation flows of micropolar fluids with strong and weak interactions[J]. Compu Math Appl, 1980, 6(2): 213-233.
    [5] Kumari M, Nath G. Unsteady incompressible boundary layer flow of a micropolar fluid at a stagnation point[J]. Int J Eng Sci, 1984, 22(16): 755-768. doi: 10.1016/0020-7225(84)90048-X
    [6] Abdullah I, Amin N. A micropolar fluid model of blood flow through a tapered artery with a stenosis[J]. Mathematical Methods in the Applied Sciences, 2010, 33(16): 1910-1923.doi: 10.1002/mma.1303.
    [7] Seddeek M A. Flow of a magneto-micropolar fluid past a continuously moving plate[J]. Phy Lett A, 2003, 306(4): 255-257. doi: 10.1016/S0375-9601(02)01513-X
    [8] Nazar R, Amin N, Filip D, Pop I. Stagnation point flow of a micropolar fluid towards a stretching sheet[J]. Int J Non-Linear Mech, 2004, 39(7): 1227-1235. doi: 10.1016/j.ijnonlinmec.2003.08.007
    [9] Takhar H S, Bhargava R, Agrawal R S, Balaji A V S. Finite element solution of a micropolar fluid flow and heat transfer between two porous discs[J]. Int J Eng Sci, 2000, 38(17):1907-1922. doi: 10.1016/S0020-7225(00)00019-7
    [10] Abo-Eldahab E M, Ghonaim A F. Radiation effects on heat transfer of a micropolar fluid through a porous medium[J]. Appl Math Comp, 2005, 169(1):500-510. doi: 10.1016/j.amc.2004.09.059
    [11] Nazar R, Amin N, Pop I. Free convection boundary layer flow on an isothermal sphere in a micropolar fluid[J]. Int Comm Heat Mass Trans, 2002, 29:377-386. doi: 10.1016/S0735-1933(02)00327-5
    [12] Sahoo B. Effects of partial slip on axisymmetric flow of an electrically conducting viscoelastic fluid past a stretching sheet[J]. Cent Eur J Phys, 2010, 8(3):498-508. doi: 10.2478/s11534-009-0105-x
    [13] 萨胡 B. 二阶流体通过径向伸展平面时滑移、黏性耗散、焦耳热对MHD流动的影响[J]. 应用数学和力学,2010, 31(2): 150-162. (Sahoo B. Effects of slip, viscous dissipation and Joule heating on the MHD flow and heat transfer of a second grade fluid past a radially stretching sheet[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(2):159-173.)
    [14] Hayat T, Nawaz M. Effect of heat transfer on magnetohydrodynamic axisymmetric flow between two stretching sheets[J]. Z Naturforsch, 2010, 65(11):1-8.
    [15] Liao S J. Beyond Perturbation: Introduction to Homotopy Analysis Method[M]. Boca Raton: Chapman and Hall CRC Press, 2003.
    [16] Liao S J. Notes on the homotopy analysis method: some definitions and theorems[J]. Comm Nonlinear Sci Num Simu, 2009, 14(4): 983-997. doi: 10.1016/j.cnsns.2008.04.013
    [17] Liao S J. A new branch of solutions of unsteady boundary layer flows over an impermeable stretched plate[J]. Int J Heat Mass Transfer, 2005, 48(12): 2529-2539. doi: 10.1016/j.ijheatmasstransfer.2005.01.005
    [18] Cheng J, Liao S J. Series solutions of nano-boundary layer flows by means of the homotopy analysis method[J]. J Math Anal Appl, 2008, 343(1): 233-245. doi: 10.1016/j.jmaa.2008.01.050
    [19] Abbasbandy S. Homotopy analysis method for the Kawahara equation[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 307-310.
    [20] Abbasbandy S, Hayat T. Solution of the MHD Falkner-Skan flow by homotopy analysis method[J]. Comm Nonlinear Sci Num Simu, 2009, 14(9/10): 3591-3598. doi: 10.1016/j.cnsns.2009.01.030
    [21] Abbasbandy S, Shirzadi A. A new application of the homotopy analysis method: Solving the Sturm—Liouville problems[J]. Comm Nonlinear Sci Num Simu, 2011, 16(1): 112-126. doi: 10.1016/j.cnsns.2010.04.004
    [22] Hashim I, Abdulaziz O, Momani S. Homotopy analysis method for fractional IVPs[J]. Comm Nonlinear Sci Numer Simu, 2009, 14(3): 674-684.
    [23] Bataineh A S, Noorani M S M, Hashim I. On a new reliable modification of homotopy analysis method[J]. Comm Nonlinear Sci Numer Simu, 2009, 14(2): 409-423. doi: 10.1016/j.cnsns.2007.10.007
    [24] Bataineh A S, Noorani M S M, Hashim I. Modified homotopy analysis method for solving systems of second-order BVPs[J]. Comm Nonlinear Sci Num Simu, 2009, 14(2): 430-442. doi: 10.1016/j.cnsns.2007.09.012
    [25] Allan F M. Derivation of the Adomian decomposition method using the homotopy analysis method[J]. Appl Math Comp, 2007, 190(1): 6-14. doi: 10.1016/j.amc.2006.12.074
    [26] Hayat T, Nawaz M. Soret and Dufour effects on the mixed convection flow of a second grade fluid subject to Hall and ion-slip currents[J]. Int J Num Methods Fluids. doi: 10.1002/fld.2405.
    [27] Hayat T, Qasim M, Abbas Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet[J]. Z Naturforch A, 2010, 65(3): 231-239.
    [28] Hayat T, Mustafa M, Pop I. Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid[J]. Comm Nonlinear Sci Num Simu, 2010, 15(5):1183-1196. doi: 10.1016/j.cnsns.2009.05.062
    [29] Hayat T, Nawaz M. Magnetohydrodynamic three-dimensional flow of a second-grade fluid with heat transfer[J]. Z Naturforsch A, 2010, 65(8): 683-691.
    [30] Hayat T, Nawaz M. Hall and ion-slip effects on three-dimensional flow of a second grade fluid[J]. Int J Num Methods Fluids. doi: 10.1002/fld.2251.
    [31] Hayat T, Awais M. Three-dimensional flow of an upper-convected Maxwell (UCM) fluid[J]. Int J Num Methods Fluids. doi: 10.1002/fld.2289.
    [32] Hayat T, Mustafa M, Mesloub S. Mixed convection boundary layer flow over a stretching surface filled with a Maxwell fluid in the presence of Soret and Dufour’s effects[J]. Z Naturforsch A , 2010, 65(5):401-410.
  • 加载中
计量
  • 文章访问数:  1449
  • HTML全文浏览量:  179
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-17
  • 修回日期:  2010-12-01
  • 刊出日期:  2011-03-15

目录

    /

    返回文章
    返回