Existence of the Weak Solution for Quantum Zakharov Equations for Plasmas Model
-
摘要: Zakharov方程具有丰富的物理背景.通过Arzela-Ascoli定理、Faedo-Galerkin方法和紧性原理,得到等离子体模型中具量子效应Zakharov方程弱整体解的存在性.
-
关键词:
- Zakharov方程 /
- Arzela-Ascoli 定理 /
- 存在性
Abstract: Zakharov equations have a fairly abundant physical background.The existence of weak global solution for quantum Zakharov equations for plasmas model,by means of Arzela-Ascoli theorem,Faedo-Galerkin methods and compactness property was obtained.-
Key words:
- Zakharov equations /
- Arzela-Ascoli theorem /
- existence
-
[1] Markowich P A, Ringhofer C A, Schmeiser C. Semiconductor Equations[M]. Vienna: Springer, 1990. [2] Jung Y D. Quantum-mechanical effects on electron-electron scattering in dense high-temperature plasmas[J]. Phys Plasmas, 2001, 8(8): 3842-3844. doi: 10.1063/1.1386430 [3] Kremp D, Bornath Th, Bonitz M, Schlanges M. Quantum kinetic theory of plasmas in strong laser fields[J]. Phys Rev E, 1999, 60(4): 4725-4732. doi: 10.1103/PhysRevE.60.4725 [4] Zakharov V E. Collapse of Langmuir waves[J]. Zh Eksp Teor Fiz, 1972, 62: 1745-1751. [5] Thornhill S G, ter Haar D. Langmuir turbulence and modulational instability[J]. Phys Rep, 1978, 43(2): 43-99. doi: 10.1016/0370-1573(78)90142-4 [6] Garcia G G, Haas F, de Oliverira L P L, Goedert J. Modified Zakharov equation for plasmas with a quantum correction[J]. Phys Plasma, 2005, 12(1): 012302-012302-8. doi: 10.1063/1.1819935 [7] Triebel H. Interpolation Theory, Function Spaces, Differential Operators[M]. Amsterdam, New York, Oxford: North-Holland Publishing Company, 1978. [8] Henry D. Geometric Theory of Semilinear Parabolic Equations[M]. Lect Notes in Math 840. Berlin, Heidelberg, New York: Springer-Verlag, 1981. [9] Schwarz L. Functional Analysis[M]. Courant Institute Lecture Notes. New York: New York University Press, 1964.
计量
- 文章访问数: 1674
- HTML全文浏览量: 169
- PDF下载量: 803
- 被引次数: 0