留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粘聚律的分离功分析以及一种一致关联粘聚律

何铭华 辛克贵

何铭华, 辛克贵. 粘聚律的分离功分析以及一种一致关联粘聚律[J]. 应用数学和力学, 2011, 32(11): 1342-1351. doi: 10.3879/j.issn.1000-0887.2011.11.008
引用本文: 何铭华, 辛克贵. 粘聚律的分离功分析以及一种一致关联粘聚律[J]. 应用数学和力学, 2011, 32(11): 1342-1351. doi: 10.3879/j.issn.1000-0887.2011.11.008
HE Ming-hua, XIN Ke-gui. Separation Work Analysis of Cohesive Law and Consistently Coupled Cohesive Law[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1342-1351. doi: 10.3879/j.issn.1000-0887.2011.11.008
Citation: HE Ming-hua, XIN Ke-gui. Separation Work Analysis of Cohesive Law and Consistently Coupled Cohesive Law[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1342-1351. doi: 10.3879/j.issn.1000-0887.2011.11.008

粘聚律的分离功分析以及一种一致关联粘聚律

doi: 10.3879/j.issn.1000-0887.2011.11.008
基金项目: 国家自然科学基金资助项目(50878117);国家自然科学基金重点资助项目(51038006);国家留学基金委高水平研究生资助项目(M.H.HE-2009621076);清华大学自主科研计划项目(No.2010081766)
详细信息
    作者简介:

    何铭华(1984- ),男,广东人,博士生(联系人.E-mail:hmh03@mails.tsinghua.edu.cn);辛克贵(1950- ),男,四川人,教授,博士,博士生导师(E-mail:xkg-dci@tsinghua.edu.cn).

  • 中图分类号: TU31;O34

Separation Work Analysis of Cohesive Law and Consistently Coupled Cohesive Law

  • 摘要: 在粘聚元或者粘聚域模型中,能够预测混合失效模式(mixed mode)的粘聚律是通过关联界面的法向分离和切向分离来建立的.考虑完全剪切失效机制的Xu-Needleman粘聚律是目前文献中应用最多的关联粘聚律之一.基于该文提出的粘聚律一致关联准则,采用界面分离功分析法,证明了考虑剪切失效机制的Xu-Needleman粘聚律在混合失效模式下,属于非一致关联粘聚律.理论分析证明,考虑剪切失效的Xu-Needleman粘聚律仅在界面的法向分离功与切向分离功相等的情况下能够正确刻画混合失效模式.基于粘聚律一致关联准则,在考虑剪切失效的Xu-Needleman粘聚律的基础上,进行修正提出一种一致关联粘聚律(CCC).分析证明,这种修正的一致关联粘聚律克服了原有Xu-Needleman粘聚律非一致关联的弊端,能够更好刻画混合失效模式下的破坏行为.
  • [1] Barenblatt G I. The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses, axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3): 622-636. doi: 10.1016/0021-8928(59)90157-1
    [2] Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2
    [3] Rose J H, Ferrante J, Smith J R. Universal binding energy curves for metals and bimetallic interfaces[J]. Physical Review Letters, 1981, 47(9): 675-678. doi: 10.1103/PhysRevLett.47.675
    [4] Needleman A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525-531. doi: 10.1115/1.3173064
    [5] Tvergaard V, Hutchinson J W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6): 1377-1397. doi: 10.1016/0022-5096(92)90020-3
    [6] XU X P, Needleman A. Numerical simulations of fast crack-growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434. doi: 10.1016/0022-5096(94)90003-5
    [7] XU X P, Needleman A. Void nucleation by inclusion debonding in a crystal matrix[J]. Modeling and Simulation in Materials Science and Engineering, 1993, 1(2): 111-132. doi: 10.1088/0965-0393/1/2/001
    [8] Park K, Paulino G H, Roesler J R. Cohesive fracture model for functionally graded fiber reinforced concrete[J]. Cement and Concrete Research, 2010, 40(6): 956-965. doi: 10.1016/j.cemconres.2010.02.004
    [9] Park K, Paulino G H, Roesler J R. A unified potential-based cohesive model of mixed-mode fracture[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(6): 891-908. doi: 10.1016/j.jmps.2008.10.003
    [10] Tvergaard V. Effect of fiber debonding in a whisker-reinforced metal[J]. Material Science and Engineering, A, 1990, 125(2): 203-213. doi: 10.1016/0921-5093(90)90170-8
    [11] Hanson J H, Bittencourt T N, Ingraffea A R. Three-dimensional influence coeeficient method for cohesive crack simulations[J]. Engineering Fracture Mechanics, 2004, 71(15): 2109-2124. doi: 10.1016/j.engfracmech.2003.12.008
    [12] Gao H, Ji B. Modeling fracture in nanomaterials via a virtual internal bond method[J]. Engineering Fracture Mechanics, 2003, 70(14): 1777-1791. doi: 10.1016/S0013-7944(03)00124-3
    [13] Gao H, Klein P. Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(2): 187-218. doi: 10.1016/S0022-5096(97)00047-1
    [14] Klein P, Gao H. Crack nucleation and growth as strain localization in a virtual-bond continuum[J]. Engineering Fracture Mechanics, 1998, 61(1): 21-48. doi: 10.1016/S0013-7944(98)00048-4
    [15] Zhu Y, Liechti K M, Ravi-Chandar K. Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces[J]. International Journal of Solids and Structures, 2009, 46(1): 31-51. doi: 10.1016/j.ijsolstr.2008.08.019
    [16] Beltz G, Rice J R. Modelling the deformation of crystallince solides[C]Lowe T C, Rollet A D, Follansbee P S.Proceedings of a Symposium Held at the Annual Meeting of the Minerals, Metals and Materials Society, Warrendale: TMS, 1991: 457-480.
    [17] Rahulkumar P, Bennison S J, Saigal S, Jagota A. Cohesive element modeling of viscoelastic fracture: application to peel testing of polymers[J]. International Journal of Solids and Structures, 2000, 37(13): 1873-1897. doi: 10.1016/S0020-7683(98)00339-4
    [18] Araki W, Nemoto K, Adachi T, Yamaji A. Fracture toughness for mixed mode I/II of epoxy resin[J]. Acta Materialia, 2005, 53(3): 869-875. doi: 10.1016/j.actamat.2004.10.035
  • 加载中
计量
  • 文章访问数:  983
  • HTML全文浏览量:  61
  • PDF下载量:  712
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-13
  • 修回日期:  2011-09-20
  • 刊出日期:  2011-11-15

目录

    /

    返回文章
    返回