留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击波作用下Air/SF-6斜界面不稳定性实验和数值模拟研究

王涛 刘金宏 柏劲松 姜洋 李平 刘坤

王涛, 刘金宏, 柏劲松, 姜洋, 李平, 刘坤. 冲击波作用下Air/SF-6斜界面不稳定性实验和数值模拟研究[J]. 应用数学和力学, 2012, 33(1): 35-47. doi: 10.3879/j.issn.1000-0887.2012.01.004
引用本文: 王涛, 刘金宏, 柏劲松, 姜洋, 李平, 刘坤. 冲击波作用下Air/SF-6斜界面不稳定性实验和数值模拟研究[J]. 应用数学和力学, 2012, 33(1): 35-47. doi: 10.3879/j.issn.1000-0887.2012.01.004
WANG Tao, LIU Jin-hong, BAI Jing-song, JIANG Yang, LI Ping, LIU Kun. Experimental and Numerical Investigation of the Inclined Air/SF-6 Interface Instability Under Shock Wave[J]. Applied Mathematics and Mechanics, 2012, 33(1): 35-47. doi: 10.3879/j.issn.1000-0887.2012.01.004
Citation: WANG Tao, LIU Jin-hong, BAI Jing-song, JIANG Yang, LI Ping, LIU Kun. Experimental and Numerical Investigation of the Inclined Air/SF-6 Interface Instability Under Shock Wave[J]. Applied Mathematics and Mechanics, 2012, 33(1): 35-47. doi: 10.3879/j.issn.1000-0887.2012.01.004

冲击波作用下Air/SF-6斜界面不稳定性实验和数值模拟研究

doi: 10.3879/j.issn.1000-0887.2012.01.004
基金项目: 国家自然科学基金资助项目(11072228;11002129)
详细信息
    通讯作者:

    王涛(1979—),男,陕西乾县人,助理研究员,硕士( 联系人.Tel: +86-816-2485148;E-mail: wtaoxp@21cn.com).

  • 中图分类号: O357

Experimental and Numerical Investigation of the Inclined Air/SF-6 Interface Instability Under Shock Wave

  • 摘要: 开展了Mach数为1.23和1.41的冲击波作用下的Air/SF6斜界面不稳定性激波管实验,并利用王涛等人发展的可压缩多介质粘性流体和湍流大涡模拟程序MVFT(multi-viscous-fluid and turbulence),对该激波管实验进行了数值模拟,二者相比较一致性较好,包括界面图像、湍流混合区TMZ(turbulent mixing zone)宽度、气泡和尖钉位移,确认了该计算代码对界面不稳定性问题模拟的可靠性和有效性.数值模拟再现了冲击波作用下,Air/SF6斜界面的演化过程及流动中复杂波系结构的发展如冲击波的传播、折射和反射.结果还显示冲击波Mach数较大时,冲击波和界面相互作用时混合区获得的能量也较大,扰动界面发展的也更快.
  • [1] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297-319.
    [2] Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Soviet Fluid Dynamics,1969, 4(5): 101-104.
    [3] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability[M]. London: Oxford University Press, 1961: 480-514.
    [4] Committee on High Energy Density Plasma Physics, Plasma Science Committee, Board on Physics and Astronomy, Division on Engineering and Physical Science. Frontiers in High Energy Density Physics[M]. Washington D C: the National Academies Press, 2001.
    [5] Dimonte G, Schneider M B. Turbulent Rayleigh-Taylor instability experiments with variable acceleration[J]. Physical Review E, 1996, 54(4): 3740-3743.
    [6] Kucherenkol Y A, Pylaev A P, Murzakov V D, Popov V N, Komarov O R, Savelev V E, Cherret R, Hass J F. Experimental study into the asymptotic stage of the separation of the turbulized mixtures in gravitationally stable mode[C]Young R, Glimm J, Boston B. Proceedings of Fifth International Workshop on Compressible Turbulent Mixing.New York: Stony Brook University Press, 1996: 221-229.
    [7] Jacobs J W, Sheeley J M. Experimental study of incompressible Richtmyer-Meshkov instability[J]. Physics of Fluids, 1996, 8(2): 405-415.
    [8] Meshkov E E, Nevmerzhitsky N V, Pavlovskii V A, Rogatchev V G, Zhidov I G. Jelly technique applications in evolution study of hydrodynamic instabilities on unstable plane and cylindrical surfaces[C]Young R, Glimm J, Boston B. Proceedings of Fifth International Workshop on Compressible Turbulent Mixing.New York: Stony Brook University Press, 1996: 243-250.
    [9] Houas L, Jourdan G, Schwaederlé L, Carrey R, Diaz F. A new large cross-section shock tube for studies of turbulent mixing induced by interfacial hydrodynamic instability[J]. Shock Waves, 2003, 13(5): 431-434.
    [10] Hosseini S H R, Takayama K. Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves[J]. Physics of Fluids, 2005, 17(8): 084101-1-17.
    [11] Holder D A, Barton C J. Shock tube Richtmyer-Meshkov experiments: inverse chevron and half height[C]Dalziel S B.Proceedings of Ninth International Workshop on Compressible Turbulent Mixing.Cambridge: Cambridge University Press, 2004: 365-373.
    [12] Jones M A, Jacobs J W. A membraneless experiment for the study of Richtmyer-Meshkov instability of a shock-accelerated gas interface[J]. Physics of Fluids, 1997, 9(10): 3078-3085.
    [13] Rightley P M, Vorobieff P, Martin R, Benjamin R F. Experimental observations of the mixing transition in a shock-accelerated gas curtain[J]. Physics of Fluids, 1999, 11(1): 186-200.
    [14] Balakumar B J, Orlicz G C, Tomkins C D, Prestridge K P. Simultaneous particle-image velocimetry-planar laser-induced fluorescence measurements of Richtmyer-Meshkov instability growth in a gas curtain with and without reshock[J]. Physics of Fluids, 2008, 20(12): 124103-1-20.
    [15] Jacobs J W. The dynamics of shock accelerated light and heavy gas cylinders[J]. Physics of Fluids A, 1993, 5(9): 2239-2247.
    [16] Tomkins C D, Prestridge K P, Rightley P M, Marr-Lyon M, Vorobieff P, Benjamin R. A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders[J]. Physics of Fluids, 2003, 15(4): 986-1004.
    [17] Kumar S, Vorobieff P, Orlicz G, Palekar A, Tomkins C, Goodenough C, Marr-Lyon M, Prestridge K P, Benjamin R F. Complex flow morphologies in shock-accelerated gaseous flows[J]. Physica D, 2007, 235(1/2): 21-28.
    [18] Mügler C, Gauthier S. Two-dimensional Navier-Stokes simulations of gaseous mixtures induced by Richtmyer-Meshkov instability[J]. Physics of Fluids, 2000, 12(7): 1783-1798.
    [19] Zoldi C A. Simulations of a shock-accelerated gas cylinder and comparison with experimental images and velocity fields[C]Schilling O.Proceedings of Eighth International Workshop on Compressible Turbulent Mixing. California: California Institute of Technology Press, 2002: 1-24.
    [20] Cohen R H, Dannevik W P, Dimits A M, Eliason D E, Mirin A A, Zhou Y, Porter D H, Woodward P R. Three-dimensional simulation of a Richtmyer-Meshkov instability with a two-scale initial perturbation[J]. Physics of Fluids, 2002, 14(10): 3692-3709.
    [21] Bates K R, Nikiforakis N, Holder D. Richtmyer-Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6[J]. Physics of Fluids, 2007, 19(3): 036101-1-16.
    [22] Colella P, Woodward P R. The piecewise parabolic method (PPM) for gas-dynamical simulations[J]. Journal of Computational Physics, 1984, 54(1): 174-201.
    [23] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
    [24] Wang T, Bai J S, Li P, Liu K. Large-eddy simulations of the Richtmyer-Meshkov instability of rectangular interface accelerated by shock waves[J]. Science in China Series G, 2010, 53(5): 905-914.
    [25] Bai J S, Liu J H, Wang T, Zou L Y, Li P, Tan D W. Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows[J]. Physical Review E, 2010, 81(5): 056302-1-5.
    [26] Vreman A W. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications[J]. Physics of Fluids, 2004, 16(10): 3670-3681.
    [27] Lilly D K. The representation of small-scale turbulence in numerical simulation experiments[C]Goldstine H H.Proceedings of IBM Scientific Computing Symposium on Environmental Sciences. New York: Yorktown Heights, 1967: 195-210.
    [28] 王继海. 二维非定常流和激波[M]. 北京: 科学出版社, 1994: 74. (WANG Ji-hai. Two-Dimensional Nonsteady Flow and Shock Waves[M]. Beijing: Science Press, 1994: 74.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1755
  • HTML全文浏览量:  169
  • PDF下载量:  940
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-18
  • 修回日期:  2011-11-08
  • 刊出日期:  2012-01-15

目录

    /

    返回文章
    返回