留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肾动脉变窄和流-固结构相互作用对非Newton脉动流的影响——一个真实的腹部主动脉和肾动脉模型

Z·摩塔扎维尼亚 A·扎尔 A·麦迪查德

Z·摩塔扎维尼亚, A·扎尔, A·麦迪查德. 肾动脉变窄和流-固结构相互作用对非Newton脉动流的影响——一个真实的腹部主动脉和肾动脉模型[J]. 应用数学和力学, 2012, 33(2): 164-176. doi: 10.3879/j.issn.1000-0887.2012.02.003
引用本文: Z·摩塔扎维尼亚, A·扎尔, A·麦迪查德. 肾动脉变窄和流-固结构相互作用对非Newton脉动流的影响——一个真实的腹部主动脉和肾动脉模型[J]. 应用数学和力学, 2012, 33(2): 164-176. doi: 10.3879/j.issn.1000-0887.2012.02.003
Zahra Mortazavinia, Amin Zare, Alireza Mehdizadeh. Effects of Renal Artery Stenosis in a Realistic Model of Abdominal Aorta and Renal Arteries Incorporating FSI and Pulsatile Non-Newtonian Blood Flow[J]. Applied Mathematics and Mechanics, 2012, 33(2): 164-176. doi: 10.3879/j.issn.1000-0887.2012.02.003
Citation: Zahra Mortazavinia, Amin Zare, Alireza Mehdizadeh. Effects of Renal Artery Stenosis in a Realistic Model of Abdominal Aorta and Renal Arteries Incorporating FSI and Pulsatile Non-Newtonian Blood Flow[J]. Applied Mathematics and Mechanics, 2012, 33(2): 164-176. doi: 10.3879/j.issn.1000-0887.2012.02.003

肾动脉变窄和流-固结构相互作用对非Newton脉动流的影响——一个真实的腹部主动脉和肾动脉模型

doi: 10.3879/j.issn.1000-0887.2012.02.003
详细信息
  • 中图分类号: O357; O368

Effects of Renal Artery Stenosis in a Realistic Model of Abdominal Aorta and Renal Arteries Incorporating FSI and Pulsatile Non-Newtonian Blood Flow

  • 摘要: 研究肾动脉狭窄(RAS)对血液流动和血管壁的影响.根据CT扫描图像,重建腹部主动脉和肾动脉的解剖模型,通过模型的脉动流进行了仿真计算,计算中考虑了流体-固体结构的相互作用(FSI).研究RAS对血管壁剪切应力和位移的影响,RAS使得肾动脉中流量减少,肾素-血管紧缩素系统可能被激活,从而导致严重的高血压.
  • [1] Moayeri M S ,Zendehbudi G R. Effects of elastic property of the wall on flow characteristics through arterial stenoses[J]. J Biomech, 2003, 36(4): 525-535.
    [2] Misra J C, Chakravarty S. Flow in arteries in the presence of stenosis[J]. J Biomech, 1986, 19(11): 907-918.
    [3] Yang W, Zhu T. Switching-toughening of ferroelectrics subjected to electric fields[J]. J Mech Phys Solids, 1998, 46(2): 291-311.
    [4] Young D F, Tsai F Y. Flow characteristics in models of arterial stenosis: Ⅱ unsteady flow[J]. J Biomech, 1973, 6(5): 547-559.
    [5] Zendehboodi G R, Moayeri M S. Comparison of physiological and simple pulsatile flows through stenosed arteries[J]. J Biomech , 1999, 32(9): 959-965.
    [6] Lee K W, Xu X Y. Modeling of flow and wall behaviour in a mildly stenosed tube[J]. J Med Eng Phys, 2002, 24(9): 575-586.
    [7] Ohja M, Cobbold R S C, Johnston K W, Hummel R L. Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods[J]. J Fluid Mech, 1989, 203(4): 173-197.
    [8] Chan W, Ding Y, Tu J Y. Modeling of non-Newtonian blood flow through a stenosed artery incorporating fluid-structure interaction[J]. ANZIAM J, 2007, 47(1): 507-523.
    [9] Li M X, Beech-Brandt J J, John L R, Hoskins P R, Easson W J. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses[J]. J Biomech, 2007, 40(16): 3715-3724.
    [10] Rindt C C M, van Steenhoven A A. Unsteady flow in a rigid three-dimensional model of the carotid artery bifurcation[J]. J Biomech, 1996, 118(1): 90-96.
    [11] Taylor C A, Hughes T J R, Zarins C K. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis[J]. Ann Biomed Eng, 1998, 26(7): 975-987.
    [12] Olufsen M S, Peskin C S, Kim W Y, Pedersen E M, Nadim A, Larsen J. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions[J]. Ann Biomed Eng, 2000, 28(11): 1281-1299.
    [13] Shipkowitz T, Rodgers V G J, Frazin L J, Chandran K B. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches[J]. J Biomech, 2000, 33(6): 717-728.
    [14] Kim H J, Vignon-Clementel I E, Feinstein J A, Figueroa C A, La Disa J F, Jansen K E, Taylor C A. On coupling a lumped parameter heart model and a three dimensional finite element aorta model[J]. Ann Biomed Eng, 2009, 37(11): 2153-2169.
    [15] Derlex F H, Schalekamp M A. Renal artery stenosis and hypertension[J]. Lancet, 1994, 344: 237-240.
    [16] Mount P, Kumar S K, MacGinley R, Mantha M, Roberts M, Mangos G. Inhibition of the renin-angiotensin system[J]. Nephrology, 2010, 15(s1): 234-243.
    [17] White C J. Catheter-based therapy for atherosclerotic renal artery stenosis[J]. Circulation, 2006, 113(11): 1464-1473.
    [18] Kagadis G C, Skouras E D, Bourantas G C, Paraskeva C A, Katsanos K, Karnabatidis D, Nikiforidis G C. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling[J]. J Med Eng Phys, 2008, 30(5): 647-660.
    [19] Westenberg J J, Wasser M N, van der Geest R J, Pattynama P M, de Roos A, Vanderschoot J, Reiber J H C. Variations in blood flow waveforms in stenotic renal arteries by 2D phase-contrast cine MRI[J]. J Magn Reson Imag, 1998, 8(3): 590-597.
    [20] Schoenberg S O, Bock M, Kallinowski F, Just A. Correlation of hemodynamic impact and morphologic degree of renal artery stenosis in a canine model[J]. J Am Soc Nephrol, 2000, 11(12): 2190-2198.
    [21] Ganong W F. Review of Medical Physiology[M]. California: Appleton & Lange, 1988.
    [22] Lai W M, Rubin D, Krempl E. Introduction to Continuum Mechanics[M]. Burlington: Elsevier Science, 1999.
    [23] Yamamoto T, Ogasawara Y, Kimura A, Tanaka H, Hiramatsu O, Tsujioka K, Lever M J, Parker K H, Jones C J H, Caro C G, Kajiya F. Blood velocity profiles in the human renal artery by doppler ultrasound and their relationship to atherosclerosis[J]. Arterioscl Throm Vas,1996, 16(1): 172-177.
    [24] Walburn F J, Schneck D J. A constitutive equation for whole human blood[J]. J Biorheol, 1976, 13(3): 201-210.
    [25] Cho Y I, Kensey K R. Effects of the non-Newtonian viscosity of blood in flows in a diseased arterial vessel—part 1: steady flows[J]. J Biorheol, 1991, 28(3/4): 241-262.
    [26] Ballyk P D, Steinman D A, Etheir C R. Simulation of non-Newtonian blood flow in an end-to-side anastomosis[J]. J Biorheol, 1994, 31(5): 565-586.
    [27] Johnston B M, Johnston P R, Corney S, Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: steady state simulations[J]. J Biomech, 2004, 37(5): 709-720.
    [28] Giannakoulas G, Giannoglou G, Soulis J, Farmakis T, Papadopoulou S, Parcharidis G, Louridas G. A computational model to predict aortic wall stresses in patients with systolic arterial hypertension[J]. Med Hypotheses, 2005, 65(6): 1191-1195.
    [29] Fry D L. Acute vascular endothelial changes associated with increased blood velocity gradients[J]. Circ Res, 1968, 22(2): 165-197.
    [30] Ramstack J M, Zuckerman L, Mockros L F. Shear induced activation of platelets[J]. J Biomech, 1979, 12(2): 113-125.
  • 加载中
计量
  • 文章访问数:  1263
  • HTML全文浏览量:  64
  • PDF下载量:  698
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-20
  • 修回日期:  2011-10-11
  • 刊出日期:  2012-02-15

目录

    /

    返回文章
    返回