留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

填充烧结铜球的T型管中流体混合的大涡模拟

王永伟 卢涛 姜培学 成鹏飞 王奎升

王永伟, 卢涛, 姜培学, 成鹏飞, 王奎升. 填充烧结铜球的T型管中流体混合的大涡模拟[J]. 应用数学和力学, 2012, 33(7): 856-867. doi: 10.3879/j.issn.1000-0887.2012.07.006
引用本文: 王永伟, 卢涛, 姜培学, 成鹏飞, 王奎升. 填充烧结铜球的T型管中流体混合的大涡模拟[J]. 应用数学和力学, 2012, 33(7): 856-867. doi: 10.3879/j.issn.1000-0887.2012.07.006
WANG Yong-wei, LU Tao, JIANG Pei-xue, CHENG Peng-fei, WANG Kui-sheng. LES of Fluid Mixing in a Tee With a Sintered Porous Medium[J]. Applied Mathematics and Mechanics, 2012, 33(7): 856-867. doi: 10.3879/j.issn.1000-0887.2012.07.006
Citation: WANG Yong-wei, LU Tao, JIANG Pei-xue, CHENG Peng-fei, WANG Kui-sheng. LES of Fluid Mixing in a Tee With a Sintered Porous Medium[J]. Applied Mathematics and Mechanics, 2012, 33(7): 856-867. doi: 10.3879/j.issn.1000-0887.2012.07.006

填充烧结铜球的T型管中流体混合的大涡模拟

doi: 10.3879/j.issn.1000-0887.2012.07.006
基金项目: 国家自然科学基金资助项目(50906002);国家基础研究计划基金资助项目(2011CB706900);高等学校博士学科点专项科研基金资助项目(20090010110006);北京市科技新星计划基金资助项目(2008B16)
详细信息
    通讯作者:

    王永伟(1977—),男,山东文登人,博士生 (E-mail: mailwyw@163.com);卢涛(1975—),男,江西丰城人,副教授,博士,博士生导师 (联系人. Tel: +86-10-64417994; E-mail: likesurge@sina.com).

  • 中图分类号: TK121

LES of Fluid Mixing in a Tee With a Sintered Porous Medium

  • 摘要: 在FLUENT软件平台上,运用大涡模拟湍流模型及Smagorinsky-Lilly亚格子尺度模型,对填充有烧结铜球多孔介质的T型管道内冷热流体混合过程的流动与传热情况进行了数值计算,与未填充多孔介质时混合区域内的平均温度和温度波动、平均速度和速度波动等数据进行了对比,并对温度波动进行了功率谱密度分析.数值结果表明,多孔介质可有效削弱T型通道流体混合区域内的温度和速度波动,有效降低1 Hz至10 Hz频域中的温度波动的功率谱密度.
  • [1] 朱维宇, 卢涛, 姜培学, 郭志军, 王奎升. T型管中冷热流体混合过程热波动大涡模拟[J]. 应用数学和力学, 2009, 30(11): 1295-1306. (ZHU Wei-yu, LU Tao, JIANG Pei-xue, GUO Zhi-jun, WANG Kui-sheng. Large eddy simulation of hot and cold fluids mixing in a T-junction for predicting thermal fluctuations[J].Applied Mathematics and Mechanics(English Edtion), 2009, 30(11): 1379-1392.)
    [2] Kuhn S, Braillard O, Niceno B, Prasser H M. Computational study of conjugate heat transfer in T-junctions[J]. Nuclear Engineering and Design, 2010, 240(6): 1548-1557.
    [3] Lee J I, Hu L W, Saha P, Kazimi M S. Numerical analysis of thermal striping induced high cycle thermal fatigue in a mixing tee[J].Nuclear Engineering and Design, 2009, 239(5): 833-839.
    [4] Frank T, Lifante C, Prasser H M, Menter F. Simulation of turbulent and thermal mixing in T-junctions using URANS and scale-resolving turbulence models in ANSYS CFX[J].Nuclear Engineering and Design, 2010, 240(9): 2313-2328.
    [5] Metzner K J, Wilke U. European THERFAT project—thermal fatigue evaluation of piping system “Tee”-connections[J].Nuclear Engineering and Design, 2005, 235(2/4): 473-484.
    [6] Kuczaj A K, Komen E M J, Loginov M S. Large-eddy Simulation study of turbulent mixing in a T-junction[J]. Nuclear Engineering and Design, 2010, 240(9): 2116-2122.
    [7] Hu L W, Kazimi M S. LES benchmark study of high cycle temperature fluctuations caused by thermal striping in a mixing tee[J]. International Journal of Heat and Fluid Flow, 2006, 27(1): 54-64.
    [8] Simoneau J P, Champigny J, Gelineau O. Applications of large eddy simulations in nuclear field[J]. Nuclear Engineering and Design, 2010, 240(2): 429-439.
    [9] Whitaker S. Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying[J]. Advances in Heat Transfer, 1977, 13: 119-203.
    [10] Jang J Y, Chen J L. Forced convection in a parallel plate channel partially filled with a high porosity medium[J]. International Communications in Heat and Mass Transfer, 1992, 19(2): 263-273.
    [11] Saito M B, Lemos M J S d. A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media[J]. International Journal of Heat and Mass Transfer, 2010, 53(11/12): 2424-2433.
    [12] Yang Y T, Hwang M L. Numerical simulation of turbulent fluid flow and heat transfer characteristics in heat exchangers fitted with porous media[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 2956-2965.
    [13] Huang Z F, Nakayama A, Yang K, Yang C, Liu W. Enhancing heat transfer in the core flow by using porous medium insert in a tube[J]. International Journal of Heat and Mass Transfer, 2010, 53(5/6): 1164-1174.
    [14] Amiri A, Vafai K. Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media[J]. International Journal of Heat and Mass Transfer, 1994, 37(6): 939-954.
    [15] Quintard M, Whitaker S. Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments[J]. International Journal of Heat and Mass Transfer, 1995, 38(15): 2779-2796.
    [16] Whitaker S. Improved constraints for the principle of local thermal equilibrium[J]. Ind Eng Chem Res, 1991, 30(5): 983-997.
    [17] Lu T, Jiang P X, Guo Z J, Zhang Y W, Li H. Large-eddy simulations (LES) of temperature fluctuations in a mixing tee with/without a porous medium[J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4458-4466.
    [18] Saito M B, Lemos M J S d. Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media[J]. International Communications in Heat and Mass Transfer, 2005, 32(5): 666-676.
    [19] Saito M B, Lemos M J S d. Laminar heat transfer in a porous channel simulated with a two-energy equation model[J]. International Communications in Heat and Mass Transfer, 2009, 36(10): 1002-1007.
    [20] Kuwahara F, Shirota M, Nakayama A. A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media[J]. International Journal of Heat and Mass Transfer, 2001, 44(6): 1153-1159.
    [21] Jiang P X, Meng Li, Ma Y C, Ren Z P. Boundary conditions and wall effect for forced convection heat transfer in sintered porous plate channels[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2073-2083.
    [22] Jiang P X, Ren Z P. Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model[J]. International Journal of Heat and Fluid Flow, 2001. 22(1): 102-110.
    [23] Wakao N, Kaguei S, Funazkri T. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed bed[J]. Chemical Engineering Science, 1979, 34(3): 325-336.
    [24] Jiang P X, Lu X C. Numerical simulation of fluid flow and convection heat transfer in sintered porous plate channels[J]. International Journal of Heat and Mass Transfer, 2006, 49(9/10): 1685-1695.
    [25] Kuwahara F, Yamane T, Nakayama A. Large eddy simulation of turbulent flow in porous media[J]. International Communications in Heat and Mass Transfer, 2006, 33(4): 411-418.
    [26] Fukushima N, Fukagata K, Kasagi N. Numerical and experimental study on turbulent thermal mxing in a t-junction flow[C]The 6th ASME-JSME Thermal Engineering Joint Conference.USA: Hawaii, 2003.
    [27] Pope S B. Turbulence Flow[M]. Cambridge: Cambridge University Press, 2000.
    [28] Temmerman L, Leschziner M A, Mellen C P, Frhlich, J. Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions[J]. International Journal of Heat and Fluid Flow, 2003, 24 (2): 157-180.
    [29] Majander P, Siikonen T. Large-eddy simulation of a round jet in a cross-flow[J]. International Journal of Heat and Fluid Flow, 2006, 27(3): 402-415.
    [30] Wegner B, Huai Y, Sadiki A. Comparative study of turbulent mixing in jet in cross-flow configurations using LES[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 767-775.
    [31] Smagorinsky J. General circulation experiments with the primitive equations—Ⅰ: the basic experiment[J]. Monthly Weather Review, 1963, 91(3): 99-164.
    [32] Lilly D K. On the application of the eddy viscosity concept in the inertial subrange of turbulence
    [33] [R]. No. 123. NCAR Manuscript, 1966.
    [34] Wang Y, Yuan G, Yoon Y K, Allen M G, Bidstrup S A. Large eddy simulation (LES) for synthetic jet thermal management[J]. International Journal of Heat and Mass Transfer, 2006,49 (13/14): 2173-2179.
    [35] Kimura K. Thermal striping in mixing tees with hot and cold water (Type A: Characteristics of flow visualization and temperature fluctuations in collision type mixing tees with same pipe diameter)[C]NTHAS3: Third Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety, Korea, 2002.
  • 加载中
计量
  • 文章访问数:  1205
  • HTML全文浏览量:  96
  • PDF下载量:  839
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-10
  • 修回日期:  2012-04-06
  • 刊出日期:  2012-07-15

目录

    /

    返回文章
    返回