留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液气界面张力垂直分量引起的基底弹性变形

余迎松

余迎松. 液气界面张力垂直分量引起的基底弹性变形[J]. 应用数学和力学, 2012, 33(9): 1025-1042. doi: 10.3879/j.issn.1000-0887.2012.09.001
引用本文: 余迎松. 液气界面张力垂直分量引起的基底弹性变形[J]. 应用数学和力学, 2012, 33(9): 1025-1042. doi: 10.3879/j.issn.1000-0887.2012.09.001
YU Ying-song. Substrate Elastic Deformation Due to Vertical Component of Liquid-Vapor Interfacial Tension[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1025-1042. doi: 10.3879/j.issn.1000-0887.2012.09.001
Citation: YU Ying-song. Substrate Elastic Deformation Due to Vertical Component of Liquid-Vapor Interfacial Tension[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1025-1042. doi: 10.3879/j.issn.1000-0887.2012.09.001

液气界面张力垂直分量引起的基底弹性变形

doi: 10.3879/j.issn.1000-0887.2012.09.001
基金项目: 国家自然科学基金资助项目(11002051)
详细信息
    通讯作者:

    余迎松(1979—),男,湖北黄冈人,博士(E-mail: wetting.yu@gmail.com).

  • 中图分类号: O343.2

Substrate Elastic Deformation Due to Vertical Component of Liquid-Vapor Interfacial Tension

  • 摘要: Young方程是毛细理论和润湿的重要方程之一.但是,该方程只描述了3个界面张力的水平分量之间的平衡与接触角的关系,而对液气界面张力垂直分量未作任何描述.现在,随着软材料的广泛应用,该垂直分量将引起基底的表面变形,并在微流体系统的制造过程中起到重要作用,这已是该研究领域的共识.综述了关于表面变形这一问题在理论分析,实验研究和数值模拟等方面取得的进展.而且,还讨论了由垂直分量引起的表面变形对液滴润湿和铺展行为、微悬臂梁的弯曲、弹性毛细现象、电弹性毛细现象等的影响.不仅对该问题的历史发展和目前的研究进展进行了简单的综述,并且也针对后续的研究提出了几点建议.
  • [1] Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. Wetting and spreading[J]. Reviews of Modern Physics, 2009, 81(2): 739-805.
    [2] De Gennes P G. Wetting: statics and dynamics[J]. Reviews of Modern Physics, 1985, 57(3): 827-863.
    [3] Adamson A W, Gast A P. Physical Chemistry of Surfaces[M]. 6th Edition. New York: A Wiley-Interscience Publication, 1997.
    [4] Leger L, Joanny J F. Liquid spreading[J]. Reports on Progress in Physics, 1992, 55(4): 431-486.
    [5] Finn R. Equilibrium Capillary Surfaces[M]. New York: Springer, 2005.
    [6] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87.
    [7] Hondros E D Dr. Thomas Young—natural philosopher[J]. Journal of Materials Science, 2005, 40(9/10): 2119-2123.
    [8] Finn R. The contact angle in capillarity[J]. Physics of Fluids, 2006, 18(4): 047102.
    [9] Maxwell J C. Capillary Action[M]. 9th ed. Encyclopedia Britannica, Inc, 1875: 566.
    [10] De Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves[M]. Berlin: Springer, 2004: 18.
    [11] 胡文瑞, 徐硕昌. 微重力流体力学[M]. 北京: 科学出版社, 1999. (HU Wen-rui, XU Shuo-chang. Micro-Gravity Fluid Mechanics[M]. Beijing: Science Press, 1999. (in Chinese))
    [12] Lester G R. Contact angles of liquids at deformable solid surfaces[J]. Journal of Colloid Science, 1961, 16(4): 315-326.
    [13] Rusanov A I. Theory of wetting of elastically deformed bodies—1: deformation with a finite contact-angle[J]. Colloid Journal of the USSR, 1975, 37(4): 614-622. (in Russian)
    [14] Fortes M A. Deformation of solid surfaces due to capillary forces[J]. Journal of Colloid and Interface Science, 1984, 100(1): 17-26.
    [15] Yu Y S, Zhao Y P. Elastic deformation of soft membrane with finite thickness induced by a sessile liquid droplet[J]. Journal of Colloid and Interface Science, 2009, 339(2): 489-494.
    [16] Liu J L, Nie Z X, Jiang W G. Deformation field of the soft substrate induced by capillary force[J]. Physica B, 2009, 404(8/11): 1195-1199.
    [17] Shanahan M E R, De Gennes P G. Equilibrium of the triple line solid/liquid/fluid of a sessile drop[C]Allen K W. Adhesion. London: Elsevier Applied Science, 1987: 71-81.
    [18] Shanahan M E R, Carré A. Spreading and dynamics of liquid drops involving nanometric deformations on soft substrates[J]. Colloids and Surfaces A, 2002, 206(1/3): 115-123.
    [19] Shanahan M E R, Carré A. Nanometric solid deformation of soft materials in capillary phenomena[C]Rosoff M. Nano-Surface Chemistry. New York: Marcel Dekker Inc, 2002.
    [20] White L R. The contact angle on the elastic substrate—1: the role of disjoining pressure in the surface mechanics[J]. Journal of Colloid and Interface Science, 2003, 258(1): 82-96.
    [21] Das S, Marchand A, Andreotti B, Snoeijer J H. Elastic deformation due to tangential capillary forces[J]. Physics of Fluids, 2011, 23(7): 072006.
    [22] Kern R, Müller P. Deformation of an elastic thin solid induced by a liquid droplet [J]. Surface Science, 1992, 264(3): 467-494.
    [23] Treloar L R G. The Physics of Rubber Elasticity[M]. Oxford: Clarendon, 1949: 66.
    [24] Shanahan M E R. The influence of solid micro-deformation on contact angle equilibrium[J]. Journal of Physics D: Applied Physics, 1987, 20(7): 945-950.
    [25] Shanahan M E R. Statics and dynamics of wetting on thin solids[J]. Revue de Physique Appliquée, 1988, 23(6): 1031-1037.
    [26] Shanahan M E R. The spreading dynamics of a liquid drop on a viscoelastic solid [J]. Journal of Physics D: Applied Physics, 1988, 21(6): 981-985.
    [27] Carré A, Shanahan M E R. Direct evidence for viscosity-independent spreading on a soft solid[J]. Langmuir, 1995, 11(1): 24-26.
    [28] Shanahan M E R, Carré A. Viscoelastic dissipation in wetting and adhesion phenomena[J]. Langmuir, 1995, 11(4): 1396-1402.
    [29] Carré A, Gastel J C, Shanahan M E R. Viscoelastic effects in the spreading of liquids[J]. Nature, 1996, 379(6564): 432-434.
    [30] Carré A, Shanahan M E R. Effect of cross-linking on the dewetting of an elastomeric surface[J]. Journal of Colloid and Interface Science, 1997, 191(1): 141-145.
    [31] Long D, Ajdari A, Leibler L. Static and dynamic wetting properties of thin rubber films[J]. Langmuir, 1996, 12(21): 5221-5230.
    [32] Andrade J D, King R N, Gregonis D E, Coleman D L. Surface characterization of poly(hydroxyethyl methacrylate) and related polymers—Ⅰ: contact angle methods in water[J]. Journal of Polymer Science: Polymer Symposium, 1979, 66(1): 313-336.
    [33] Métois J J. Elastic straining of a thin graphite layer by a liquid droplet or a non-epitaxed Pb crystallite[J]. Surface Science, 1991, 241(3): 279-288.
    [34] Extrand C W, Kumagai Y. Contact angle and hysteresis on soft surfaces[J]. Journal of Colloid and Interface Science, 1996, 184(1): 191-200.
    [35] Saiz E, Tomsia A P, Cannon R M. Ridging effects on wetting and spreading of liquids on solids[J]. Acta Materialia, 1998, 46(7): 2349-2361.
    [36] Pu G, Guo J H, Gwin L E, Severtson S J. Mechanical pinning of liquids through inelastic wetting ridge formation on thermally stripped acrylic polymers[J]. Langmuir, 2007, 23(24): 12142-12146.
    [37] Pericet-Cmara R, Auernhammer G K, Koynov K, Lorenzoni S, Raiteri R, Bonaccurso E. Solid-supported thin elastomer films deformed by microdrops[J]. Soft Matter, 2009, 5(19): 3611-3617.
    [38] Pericet-Cámara R, Best A, Butt H J, Bonaccurso E. Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation[J]. Langmuir, 2008, 24(19): 10565-10568.
    [39] Jerison E R, Xu Y, Wilen L A, Dufresne E R. Deformation of an elastic substrate by a three-phase contact line[J]. Physical Review Letters, 2011, 106(18): 186103.
    [40] Saiz E, Cannon R M, Tomsia A P. Reactive spreading: adsorption, ridging and compound formation[J]. Acta Materialia, 2000, 48(18/19): 4449-4462.
    [41] Madasu S, Cairncross R A. Static wetting on flexible substrates: a finite element formulation[J]. International Journal for Numerical Methods in Fluids, 2004, 45(3): 301-319.
    [42] Yu Y S, Yang Z Y, Zhao Y P. Role of vertical component of surface tension of the droplet on the elastic deformation of PDMS membrane[J]. Journal of Adhesion Science and Technology, 2008, 22(7): 687-698.
    [43] Yu Y S, Zhao Y P. Deformation of PDMS membrane and microcantilever by a water droplet: comparison between Mooney-Rivlin and linear elastic constitutive models[J]. Journal of Colloid and Interface Science, 2009, 332(2): 467-476.
    [44] 王奉超. 纳尺度固液界面力学中的边界滑移与接触角滞后[D]. 北京:中国科学院力学研究所博士学位论文, 2012.(WANG Feng-chao. Boundary slip and contact angle hysteresis in the nanoscale liquid-interfacial mechanics[D]. Ph D Dissertation. Beijing: Graduate University of Chinese Academy of Sciences, 2012.(in Chinese))
    [45] Rugar D, Hansma P. Atomic force microscopy[J]. Physics Today, 1990, 43(10): 23-30.
    [46] Dimitriadis E K, Horkay F, Maresca J, Kachar B, Chadwick R S. Determination of elastic moduli of thin layers of soft material using the atomic force microscopy [J]. Biophysical Journal, 2002, 82(5): 2798-2810.
    [47] Magonov S N, Reneker D H. Characterization of polymer surfaces with atomic force microscopy[J]. Annual Review of Materials Science, 1997, 27: 175-222.
    [48] Zhao L M, Schaefer D, Marten M R. Assessment of elasticity a
  • 加载中
计量
  • 文章访问数:  2280
  • HTML全文浏览量:  138
  • PDF下载量:  1836
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-08
  • 修回日期:  2012-05-23
  • 刊出日期:  2012-09-15

目录

    /

    返回文章
    返回