留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用CT-VOF法在数值波试验槽中生成线性和非线性波

H·萨格亥 M·J·可塔卜达瑞 S·布什

H·萨格亥, M·J·可塔卜达瑞, S·布什. 用CT-VOF法在数值波试验槽中生成线性和非线性波[J]. 应用数学和力学, 2012, 33(9): 1102-1114. doi: 10.3879/j.issn.1000-0887.2012.09.007
引用本文: H·萨格亥, M·J·可塔卜达瑞, S·布什. 用CT-VOF法在数值波试验槽中生成线性和非线性波[J]. 应用数学和力学, 2012, 33(9): 1102-1114. doi: 10.3879/j.issn.1000-0887.2012.09.007
H.Saghi, M.J.Ketabdari, S.Booshi. Generation of Linear and Nonlinear Waves in a Numerical Wave Tank Using CT-VOF Method[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1102-1114. doi: 10.3879/j.issn.1000-0887.2012.09.007
Citation: H.Saghi, M.J.Ketabdari, S.Booshi. Generation of Linear and Nonlinear Waves in a Numerical Wave Tank Using CT-VOF Method[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1102-1114. doi: 10.3879/j.issn.1000-0887.2012.09.007

用CT-VOF法在数值波试验槽中生成线性和非线性波

doi: 10.3879/j.issn.1000-0887.2012.09.007
详细信息
  • 中图分类号: O361.3; O357.3; O357.4

Generation of Linear and Nonlinear Waves in a Numerical Wave Tank Using CT-VOF Method

  • 摘要: 为渡水槽中波的模拟和传播提出了二维的数值模型.假设流动的流体为粘性、不可压缩的,并将Navier-Stokes方程和连续性方程作为控制方程.用标准的k-ε模型来模拟紊流流动;用交错网格的有限差分法,离散化Navier-Stokes方程;并用简化的标识和单元(SMAC)方法进行求解.使用活塞型波发生器生成并传播波;数值渡水槽的端部采用敞开式的边界条件.为了证明模型的有效性,进行了一些标准的试验,如顶盖驱动的方腔测试试验、单向的常速度场试验以及干燥河床上的溃坝试验.为了论证方法的性能及其精度,将所生成波的结果与已有波理论的结果进行比较.最后,采用群集技术(CT)生成网格,并提出最佳的网格生成条件.
  • [1] Contento G. Numerical wave tank computations of nonlinear motions of two-dimensional arbitrarily shaped free floating bodies[J]. Ocean Engineering, 2000, 27(5): 531-556.
    [2] Grilli S T, Vogelmenn S, Watts P. Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides[J]. Engineering Analysis With Boundary Elements, 2002, 26(4): 301-313.
    [3] Fochesato C, Grilli S, Dias F. Numerical modeling of extreme rogue waves generated by directional energy focusing[J]. Wave Motion, 2007, 44(5): 395-416.
    [4] Ducrozet G, Bonnefoy F, Le Touzé D, Ferrant P. A modified high-order spectral method for wavemaker modeling in a numerical wave tank[J]. European Journal of Mechanics B/Fluids, 2012, 34:19-34.
    [5] Park J C, Kim M H, Miyata H, Chun H H. Fully nonlinear numerical wave tank (NWT) simulations and wave run-up prediction around 3-D structures[J]. Ocean Engineering, 2003, 30(15): 1969-1996.
    [6] Li Y, Lin M. Regular and irregular wave impacts on floating body[J]. Ocean Engineering, 2012, 42: 93-101.
    [7] Rudman M. Volume-tracking methods for interfacial flow calculations[J]. International Journal for Numerical Methods in Fluids, 1997, 24: 671-691.
    [8] Troch P, De Rouck J. An active wave generating-absorbing boundary condition for VOF type numerical model[J]. Coastal Engineering, 1999, 38(4): 223-247.
    [9] Choi J W, Yoon S B. Numerical simulation using momentum source wave-maker applied RANSE equation model[J]. Coastal Engineering, 2009, 56(10): 1043-1060.
    [10] Zhao X Z, Hu C H, Sun Z C. Numerical simulation of extreme wave generation using VOF method[J]. Journal of Hydrodynamics, 2010, 22(4): 466-477.
    [11] Schffer H A, Steenberg C M. Second-order wavemaker theory for multidirectional waves[J]. Ocean Engineering, 2003, 30(10): 1203-1231.
    [12] TENG Bin, NING De-zhi. A simplified model for extreme-wave kinematics in deep sea[J]. J Marine Sci Appl, 2009, 8(1): 27-32.
    [13] 魏岗, 乐嘉春, 戴世强. 有限深度两层流体系统中运动点源生成的内波及其与自由面的相互作用[J]. 应用数学和力学,2003, 24(9): 906-918.(WEI Gang, LE Jia-chun, DAI Shi-qiang. Surface effects on internal wave generated by a moving source in a two-layer fluid of finite depth[J]. Applied Mathematics and Mechanics(English Edition), 2003, 24(9): 1025-1040.)
    [14] Lara J L, Garcia N, Losada I J. RANS modelling applied to random wave interaction with submerged permeable structure[J]. Coastal Engineering, 2006, 113(3): 396-417.
    [15] Lin P, Karunarathna S A S. Numerical study of solitary wave interaction with porous breakwaters[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2007, 133(5): 352-363.
    [16] Shin S, Bae S Y, Kim I C, Kim Y J, Yoo H K. Simulation of free surface flows using the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method[J]. International Journal for Numerical Methods in Fluids, 2012, 68(3): 360-376.
    [17] Rafei R. Numerical solution of incompressible 3D turbulent flow in a spiral channel[D]. M Sc Thesis. Tehran, Iran: Amirkabir University of Technology, 2004.
    [18] Li C W, Zang Y F. Simulation of free surface recirculating flows in semi-enclosed water bodies by a k-w model[J]. Applied Mathematical Modeling, 1998, 22(3): 153-164.
    [19] Gao H, Gu H Y, Guo L J. Numerical study of stratified oil-water two-phase turbulent flow in a horizontal tube[J]. Int J Heat Mass Transfer, 2003, 46(4): 749-754.
    [20] Ren B, Wang Y. Numerical simulation of random wave slamming on structures in the splash zone[J]. Ocean Engineering, 2004, 31(5/6): 547-560.
    [21] Shen Y M, Ng C O, Zheng Y H. Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-ε turbulence modeling[J]. Ocean Engineering, 2004, 31(1): 87-95.
    [22] Mirbagheri S M H, Dadashzadeh M, Serajzadeh S, Taheri A K, Davami P. Modeling the effect of mould wall roughness on the melt flow simulation in casting process[J]. Applied Mathematical Modeling, 2004, 28(11): 933-956.
    [23] Geuyffier D, Li J, Nadim A, Scardovelli R, Zaleski S. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows[J]. Journal of Computational Physics, 1999, 152(2): 423-456.
    [24] Harvie D J E, Fletcher D F. A new volume of fluid advection algorithm: the defined donating region scheme[J]. International Journal for Numerical Methods in Fluids, 2001, 35(2): 151-172.
    [25] Ketabdari M J, Nobari M R H, Larmaei M M. Simulation of waves group propagation and breaking in coastal zone using a Navier-Stokes solver with an improved VOF free surface treatment[J]. Applied Ocean Research, 2008, 30(2): 130-143.
    [26] Hur D S, Mizutani M. Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater[J]. Coast Eng, 2003, 47(3): 329-345.
    [27] Duff E S. Fluid flow aspects of solidification modeling, simulation of low pressure Die casting[D]. PhD Thesis. Brisbane: University of Queenland, 1999.
    [28] Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. Journal of Computational Physics, 1982, 48(3): 387-411.
    [29] Scardovelli R, Zaleski S. Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection[J]. International Journal of Numerical Methods in Fluids, 2003, 41(3): 251-274.
    [30] Martin J C, Moyce W J. An experimental study of the collapse of liquid columns on a rigid horizontal plane[J]. Philosophical Transaction of the Royal Society of London, 1952, 244(882): 312-324.
    [31] Shen Y M, Ng C O, Zheng Y H. Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-ε turbulence modeling[J]. Ocean Eng, 2004, 31(1): 87-95.
    [32] Boussinesq M J. Théorie de l’intumescence liquide, appelée onde solitaire ou de translation se propageant dans un canal rectangulaire[J]. C R Acad Sci(Paris), 1871, 72: 755-759.
    [33] Rayleigh L. On waves[J]. Phil Mag, 1876, 1: 257-279.
    [34] Clamond D, Germain J P. Interaction between a Stokes wave packet and a solitary wave[J]. Eur J Mech B/Fluids, 1999, 18(1): 67-91.
    [35] Temperville A. Contribution  l’étude des ondes de gravité en eau peu profonde[D]. Thèse d’Etat. Université Joseph Fourier-Grenoble I, 1985.
  • 加载中
计量
  • 文章访问数:  1731
  • HTML全文浏览量:  121
  • PDF下载量:  800
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-06
  • 修回日期:  2011-12-28
  • 刊出日期:  2012-09-15

目录

    /

    返回文章
    返回