留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计入气穴的水下爆炸作用下结构流固耦合三维数值模拟

张阿漫 任少飞 李青 李佳

张阿漫, 任少飞, 李青, 李佳. 计入气穴的水下爆炸作用下结构流固耦合三维数值模拟[J]. 应用数学和力学, 2012, 33(9): 1115-1128. doi: 10.3879/j.issn.1000-0887.2012.09.008
引用本文: 张阿漫, 任少飞, 李青, 李佳. 计入气穴的水下爆炸作用下结构流固耦合三维数值模拟[J]. 应用数学和力学, 2012, 33(9): 1115-1128. doi: 10.3879/j.issn.1000-0887.2012.09.008
ZHANG A-man, REN Shao-fei, LI Qingdoi: 10.3879/j.issn.1000-0887.2012.09.008
Citation: ZHANG A-man, REN Shao-fei, LI Qing<, LI Jia. 3D Numerical Simulation on the Fluid-Structure Interaction of Structure Subjected to Underwater Explosion With Cavitation[J]. Applied Mathematics and Mechanics, 2012, 33(9): 1115-1128. doi: 10.3879/j.issn.1000-0887.2012.09.008

计入气穴的水下爆炸作用下结构流固耦合三维数值模拟

doi: 10.3879/j.issn.1000-0887.2012.09.008
基金项目: 新世纪优秀人才支持计划基金资助项目(NCET100054);第十二届霍英东教育基金资助项目(121073);国家自然科学基金委员会-中国工程物理研究院联合基金资助项目(10976008);国家自然科学基金重点资助项目(50939002)
详细信息
    通讯作者:

    张阿漫(1981—),男,江西九江人,教授,博士生导师(E-mail: amanzhang@gmail.com);任少飞(1986—),男,陕西宝鸡人,博士生(联系人.E-mail: shaofeiren@gmail.com).

  • 中图分类号: O383.1;U661.43

3D Numerical Simulation on the Fluid-Structure Interaction of Structure Subjected to Underwater Explosion With Cavitation

  • 摘要: 水下爆炸在结构物面附近产生的气穴现象,严重影响水下爆炸作用下的流固耦合动响应,是舰船水下爆炸领域的难点,传统的边界元方法、有限元方法(FEM)难以解决水下爆炸气穴现象这类强非线性问题.针对此问题,计及流体中的气穴现象,考虑流体的可压缩型,忽略流体粘性,建立水下爆炸瞬态强非线性流固耦合三维数值模型,采用流体谱单元方法(SEM)和结构有限元方法求解该模型.计算结果表明:相对有限元法,谱单元法具有更高的计算精度,且谱单元解与解析解、试验值吻合良好.在此基础上,结合ABAQUS软件,分别探讨三维球壳、船体板架在水下爆炸作用下的瞬态流固耦合机理,给出气穴区域及其对水中结构物动响应的影响特征,旨在为舰船水下爆炸瞬态流固耦合问题的相关研究提供参考.
  • [1] Kennard E H. Cavitation in an elastic liquid[J]. Physical Review, 1943, 63(5/6): 172-181.
    [2] Felippa C A, Deruntz J A. Finite element analysis of shock-induced hull cavitation[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 44(3): 297-337.
    [3] Ranlet D, DiMaggio F L, Bleich H H, Baron M L. Elastic response of submerged shells with internally attached structures to shock loading[J]. Computers & Structures, 1977, 7(3): 355-364.
    [4] 宫兆新, 鲁传敬, 黄华雄. 虚拟解法分析浸入边界法的精度[J].应用数学和力学, 2010, 31(10): 1141-1151. (GONG Zhao-xin, LU Chuan-jing, HUANG Hua-xiong. Accuracy analysis of immersed boundary method using method of manufactured solutions[J].Applied Mathematics and Mechanics(English Edition), 2010, 31(10): 1197-1208.)
    [5] Astley R J. Transient wave envelope elements for wave problems[J]. Journal of Sound and Vibration, 1996, 192(1): 245-261.
    [6] Geers T L. Residual potential and approximate methods for three-dimensional fluid-structure interaction problems[J]. Journal of the Acoustical Society of America, 1971, 49(5): 1505-1510.
    [7] Rnquist Einar M, Patera Anthony T. A Legendre spectral element method for the Stefan problem[J]. International Journal for Numerical Methods in Engineering, 1987, 24(12): 2273-2299.
    [8] Komatitsch D, Vilotte J P. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures[J] . Bulletin of the Seismological Society of America, 1998, 88(2): 368-392.
    [9] Mulder W A. Spurious modes in finite-element discretizations of the wave equation may not be all that bad[J]. Applied Numerical Mathematics, 1999, 30(4): 425-445.
    [10] Giannakouros J. A spectral element-FCT method for the compressible Euler equations[J]. Journal of Computational Physics, 1994, 115(1): 65-85.
    [11] Fornberg B. A Practical Guide to Pseudo Spectral Methods[M]. USA: Cambridge University Press, 1998.
    [12] Fischer P F. Analysis and application of a parallel spectral element method for the solution of the Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 80(1/3): 483-491.
    [13] Patera A T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3): 468-488.
    [14] Michael A S. Advanced computational techniques for the analysis of 3-D fluid-structure interaction with cavitation[D]. Boulder: University of Colorado at Boulder, 2002, 10-65.
    [15] BleichH H, Sandler I S. Interaction between structures and bilinear fluids[J]. International Journal of Solids and Structures, 1970, 6(5): 617-639.
    [16] Priolo E, Carcione J M, Seriani G. Numerical simulation of interface waves by high-order spectral modeling techniques[J]. Journal of the Acoustical Society of America, 1994, 95(2): 681-693.
    [17] Taflove A. A perspective on the 40-year history of FDTD computational electrodynamics[J]. Applied Computational Electromagnetics Society Journal, 2007, 22(1): 1-21.
    [18] Felippa C A, DeRuntz J A. Finite element analysis of shock-induced hull cavitation[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 44(3): 297-337.
    [19] Hibbitt, Karlsson and Sorensen Inc. ABAQUS Analysis User’s Manual(Version 6.10)
    [20] [OL]. 2010.(http:abaqus.civil.uwa.edu.au:2080/v6.10/index.html)
    [21] Geers T L. An objective error measure for the comparison of calculated and measured transient response histories[J]. The Shock and Vibration Bulletin, 1984, 54(2): 99-108.
    [22] Huang H. Transient interaction of plane acoustic waves with a spherical elastic shell[J]. Journal of the Acoustical Society of America, 1969, 45(3): 661-670.
    [23] Huang H, Mair H U. Neoclassical solution of transient interaction of plane acoustic waves with a spherical elastic shell[J]. Shock and Vibration, 1996, 3(2): 85-98.
    [24] 牟金磊, 朱锡, 张振华.水下爆炸作用下加筋板结构响应的数值仿真研究[J]. 船海工程, 2006, 6:12-16. (MU Jin-lei, ZHU Xi, ZHANG Zhen-hua. A study on numerical simulation of stiffened plates’s response under underwater explosion[J]. Ship & Ocean Engineering, 2006, 6: 12-16. (in Chinese))
  • 加载中
计量
  • 文章访问数:  1623
  • HTML全文浏览量:  123
  • PDF下载量:  733
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-29
  • 修回日期:  2012-04-27
  • 刊出日期:  2012-09-15

目录

    /

    返回文章
    返回