留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单个水分子与碳纳米管的离散-连续混合模型——水分子进入碳纳米管的条件及其相互作用力、速度和能量分布

R·安萨利 E·卡泽米

R·安萨利, E·卡泽米. 单个水分子与碳纳米管的离散-连续混合模型——水分子进入碳纳米管的条件及其相互作用力、速度和能量分布[J]. 应用数学和力学, 2012, 33(10): 1199-1210. doi: 10.3879/j.issn.1000-0887.2012.10.006
引用本文: R·安萨利, E·卡泽米. 单个水分子与碳纳米管的离散-连续混合模型——水分子进入碳纳米管的条件及其相互作用力、速度和能量分布[J]. 应用数学和力学, 2012, 33(10): 1199-1210. doi: 10.3879/j.issn.1000-0887.2012.10.006
R.Ansari, E.Kazemi. Detailed Investigation Into a Single Water Molecule Entering Carbon Nanotubes[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1199-1210. doi: 10.3879/j.issn.1000-0887.2012.10.006
Citation: R.Ansari, E.Kazemi. Detailed Investigation Into a Single Water Molecule Entering Carbon Nanotubes[J]. Applied Mathematics and Mechanics, 2012, 33(10): 1199-1210. doi: 10.3879/j.issn.1000-0887.2012.10.006

单个水分子与碳纳米管的离散-连续混合模型——水分子进入碳纳米管的条件及其相互作用力、速度和能量分布

doi: 10.3879/j.issn.1000-0887.2012.10.006
详细信息
  • 中图分类号: O357.2

Detailed Investigation Into a Single Water Molecule Entering Carbon Nanotubes

  • 摘要: 研究水分子进入碳纳米管(CNT)时的物理特性.采用连续模型连同Lennard-Jones势函数,得到单壁面碳纳米管(SWCNT)与单个水分子之间的van der Waals力.水分子选择3种方位进入纳米管,其中水分子质心位于纳米管轴线上.对不同的纳米管半径和水分子进入方位,广泛地研究了相互作用力、能量和速度的分布.用分子动力学(MD)模拟得到的结果,来验证上述得到的相互作用力和能量分布.导出水分子进入纳米管时的可吸入半径,并详细地给出了有利于水分子进入纳米管半径的界限.计算单个水分子进入纳米管的速度,为不同进入方位的水分子,给出最大的入口速度和最大的管内速度.
  • [1] Iijima S. Helical microtubules of graphite carbon[J]. Nature, 1991,354:56-58.
    [2] Mitchell D T, Lee S B, Trofin L, Li N C, Nevanen T K,Soderlund H,Martin C R. Smart nanotubes for bioseparations and biocatalysis[J]. J Am Chem Soc,2002, 124(40): 11864-11865.
    [3] Kohli P, Wirtz M, Martin C R. Nanotube membrane based biosensors[J]. Electroanalysis, 2004,16(1/2):9-18.
    [4] Lee S M, Lee Y H. A hydrogen storage mechanism in SWCNTs[J]. Appl Phys Lett, 2000, 76(20): 2877-2879.
    [5] Muthukumar M. Polymer translocation through a hole[J]. Chem Phys, 1999, 111(22):10371-10374.
    [6] Chen H B, Johnson J K, Sholl D S. Transport diffusion of gases is rapid in flexible carbon nanotubes[J]. J Phys Chem B, 2006, 110(5):1971-1975.
    [7] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776):1034-1037.
    [8] Majumder M, Chopra N, Andrews R, Hinds B J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes[J]. Nature, 2005, 438: 44-44.
    [9] Hummer G, Rasaiah J C, Noworyta J. Water conduction through the hydrophobic channel of a Carbon Nanotube[J]. Nature, 2001, 414: 188-190.
    [10] de Groot B L, Grubmuller H. Water permeation a cross biological membranes: mechanism and dynamics of aquaporin-1 and GlpF[J]. Science, 2001, 294(5550): 2353-2357.
    [11] Tajkhorshid E, Nollert P, Jensen M O, Miercke L J W, O’Connell J, Stroud R M, Schulten K. Control of the selectivity of the aquaporin water channel family by global orientational tuning[J]. Science, 2002, 296(5567): 525-530.
    [12] Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A, Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1[J]. Nature, 2000, 407: 599-605.
    [13] Majumder M, Chopra N, Andrews R, Hinds B J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(44): 930.
    [14] WAN Rong-zheng, LI Jing-yuan, LU Hang-jun, FANG Hai-ping. Controllable water channel gating of nanometer dimensions[J]. J Am Chem Soc, 2005, 127(9): 7166-7170.
    [15] FANG Hai-ping, WAN Rong-zheng, GONG Xiao-jing, LU Hang-jun, LI Song-yan. Dynamics of single-file water chains inside nanoscale channels: physics, biological significance and applications[J]. J Phys D: Appl Phys, 2008, 41(10): 103002.
    [16] Sansom M S P, Biggin Ph C. Water at the nanoscale[J]. Nature, 2001, 414(8): 156-157.
    [17] GONG Xiao-jing, LI Jing-yuan, ZHANG He, WAN Rong-zheng, LU Hang-jun, WANG Shen, FANG Hai-ping. Enhancement of water permeation across a nanochannel by the structure outside the channel[J]. Phys Rev Lett, 2008, 101(25): 257801.
    [18] Cambré S, Schoeters B, Luyckx S, Goovaerts E, Wenseleers W. Experimental observation of single-file water filling of thin SWCNT down to chiral index (5, 3)[J]. Phys Rev Lett, 2010, 104(20): 207401.
    [19] 亓文鹏, 涂育松, 万荣正, 方海平.提高水分子流出纳米碳管速度的特殊水分子偶极排布研究[J].应用数学和力学, 2011, 32(9):1030-1036. (QI Wen-peng, TU Yu-song, WAN Rong-zheng, FANG Hai-ping. Orientations of special water dipoles that accelerate water molecules exiting from carbon nanotube[J]. Applied Mathematics and Mechanics(English Edition), 2011, 32(9):1101-1108.)
    [20] Zuo G, Shen R, Ma S, Guo W. Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel[J]. ACS Nano, 2010, 4(1): 205-210.
    [21] Wang L, Zhao J, Li F, Fang H, Lu J P. First-principles study of water chains encapsulated in SWCNT[J]. J Phys Chem C, 2009, 113: 5368-5375.
    [22] Hilder T A, Hill J M. Maximum velocity for a single water molecule entering a carbon nanotube[J]. J Nanosci Nanotechnol, 2009, 9(2): 1403-1407.
    [23] Hilder T A, Hill J M. Continuous versus discrete for interacting carbon nanostructures[J]. J Phys A: Math Theor, 2007, 40(14): 3851-3868.
    [24] Tersoff J. New empirical approach for the structure and energy of covalent systems[J]. Phys Rev B, 1988, 37: 6991-7000.
    [25] Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films[J]. Phys Rev B, 1990, 42: 9458-9471.
    [26] Allen M P, Tildesley D J.Computer Simulation of Liquids[M].New York:Oxford University Press, 1986.
    [27] Hoover W G. Canonical dynamics: phase-space distributions[J]. Phys Rev A, 1985, 31(3): 1695-1697.
    [28] Cox B J, Thamwattana N, Hill J M. Mechanics of atoms and fullerenes in SWCNTs—I: acceptance and suction energies[J]. Proc R Soc A, 2007, 463: 461-477.
  • 加载中
计量
  • 文章访问数:  1713
  • HTML全文浏览量:  91
  • PDF下载量:  1010
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-28
  • 修回日期:  2012-03-27
  • 刊出日期:  2012-10-15

目录

    /

    返回文章
    返回