留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力降低因子和陶瓷材料抗热冲击阻力参数的性质及适用条件

李卫国 成天宝 张如炳 方岱宁

李卫国, 成天宝, 张如炳, 方岱宁. 应力降低因子和陶瓷材料抗热冲击阻力参数的性质及适用条件[J]. 应用数学和力学, 2012, 33(11): 1257-1265. doi: 10.3879/j.issn.1000-0887.2012.11.001
引用本文: 李卫国, 成天宝, 张如炳, 方岱宁. 应力降低因子和陶瓷材料抗热冲击阻力参数的性质及适用条件[J]. 应用数学和力学, 2012, 33(11): 1257-1265. doi: 10.3879/j.issn.1000-0887.2012.11.001
LI Wei-guo, CHENG Tian-bao, ZHANG Ru-bing, FANG Dai-ning. Properties and Appropriate Conditions of Stress Reduction Factor and Thermal Shock Resistance Parameters for Ceramics[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1257-1265. doi: 10.3879/j.issn.1000-0887.2012.11.001
Citation: LI Wei-guo, CHENG Tian-bao, ZHANG Ru-bing, FANG Dai-ning. Properties and Appropriate Conditions of Stress Reduction Factor and Thermal Shock Resistance Parameters for Ceramics[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1257-1265. doi: 10.3879/j.issn.1000-0887.2012.11.001

应力降低因子和陶瓷材料抗热冲击阻力参数的性质及适用条件

doi: 10.3879/j.issn.1000-0887.2012.11.001
基金项目: 国家自然科学基金资助项目(90916009;11172336)
详细信息
    通讯作者:

    李卫国(1976—),男,山东人,副教授,博士,硕士生导师(联系人. Tel: +86-23-65102421; E-mail: wgli@cqu.edu.cn);方岱宁(1958—),男,北京人,教授,博士,博士生导师(Tel: +86-10-62760322; E-mail: fangdn@pku.edu.cn).

  • 中图分类号: O343.6

Properties and Appropriate Conditions of Stress Reduction Factor and Thermal Shock Resistance Parameters for Ceramics

  • 摘要: 将对流条件下薄板的瞬态导热问题的解析解引入自由弹性薄板的热应力场模型中,给出了相应应力降低因子的具体表达形式.为了便于比较,进一步定义了一个新的应力降低因子.详细讨论了应力降低因子及分别对应于高Biot模数和低Biot模数的第1个和第2个抗热冲击阻力参数及与中间量级的Biot模数相对应的近似表达式的性质及适用条件.将传热学与热弹性力学或断裂力学相结合的方法及有限元方法是该文所推荐的抗热震性能计算方法.研究表明,采用断裂临界温差和断裂临界无量纲时间相结合的方式能够直观简洁地表征陶瓷材料的抗热震性能.
  • [1] Cheng C M. Resistance to thermal shock[J]. Journal of the American Rocket Society, 1951, 21(6): 147-153.
    [2] Kingery W D. Factors affecting thermal stress resistance of ceramic materials[J]. Journal of the American Ceramic Society, 1955, 38(1): 3-15.
    [3] Hasselman D P H. Elastic energy at fracture and surface energy as design criteria for thermal shock[J]. Journal of the American Ceramic Society, 1963, 46(11): 535-540.
    [4] Hasselman D P H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics[J]. Journal of the American Ceramic Society, 1969, 52(11): 600-604.
    [5] Kingery W D, Bowen H K, Uhlmann D R. Introduction to Ceramics[M]. 2nd ed. New York: John Wiley and Sons, 1976.
    [6] Lewis D. Comparison of critical ΔTc values in thermal shock with the R parameter[J]. Journal of the American Ceramic Society, 1980, 63(11/12): 713-714.
    [7] Wang H, Singh R N. Thermal shock behaviour of ceramics and ceramic composites[J]. International Materials Reviews, 1994, 39(6): 228-244.
    [8] Green D J.An Introduction to the Mechanical Properties of Ceramics[M]. Cambridge: Cambridge University Press, 1998.
    [9] Fahrenholtz W G, Hilmas G E, Talmy I G, Zaykoski J A. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364.
    [10] HOU Lei, ZHAO Jun-jie, LI Han-ling. Finite element convergence analysis of two-scale non-Newtonian flow problems[J].Advanced Materials Research, 2013,718/720: 1723-1728.
    [11] 戈西 M K, 卡诺瑞阿 M. 热冲击荷载作用下的含球形空腔的广义热弹性功能梯度球形各向同性体[J].应用数学和力学, 2008, 29(10):1147-1160. (Ghosh M K, Kanoria M. Generalized thermoelastic functionally graded spherically isotropic solid containing a spherical cavity under thermal shock[J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(10): 1263-1278.)
    [12] Meng S H, Liu G Q, Sun S L. Prediction of crack depth during quenching test for an ultra high temperature ceramic[J]. Materials and Design, 2010, 31(1): 556-559.
    [13] Shao Y F, Xu X H, Meng S H, Bai G H, Jiang C P, Song F. Crack patterns in ceramic plates after quenching[J]. Journal of the American Ceramic Society, 2010, 93(10): 3006-3008.
    [14] Liang J, Wang Y, Fang G D, Han J C. Research on thermal shock resistance of ZrB2-SiC-AlN ceramics using an indentation-quench method[J]. Journal of Alloys and Compounds, 2010, 493(1/2): 695-698.
    [15] Han J C, Wang B L. Thermal shock resistance of ceramics with temperature-dependent material properties at elevated temperature[J]. Acta Materialia, 2011, 59(4): 1373-1382.
    [16] Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M, Salem J A. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. Journal of the European Ceramic Society, 2002, 22(14/15): 2757-2767.
    [17] Zhang X H, Xu L, Du S Y, Han W B, Han J C, Liu C Y. Thermal shock behavior of SiC-whisker-reinforced diboride ultrahigh-temperature ceramics[J]. Scripta Materialia, 2008, 59(1): 55-58.
    [18] Liang J, Wang C, Wang Y, Jing L, Luan X. The influence of surface heat transfer conditions on thermal shock behavior of ZrB2-SiC-AlN ceramic composites[J]. Scripta Materialia, 2009, 61(6): 656-659.
    [19] Zhang X H, Wang Z, Hu P, Han W B, Hong C Q. Mechanical properties and thermal shock resistance of ZrB2-SiC ceramic toughened with graphite flake and SiC whiskers[J]. Scripta Materialia, 2009, 61(8): 809-812.
    [20] zdemir I, Brekelmans W A M, Geers M G D. Modeling thermal shock damage in refractory materials via direct numerical simulation (DNS)[J]. Journal of the European Ceramic Society, 2010, 30(7): 1585-1597.
    [21] Li W G, Cheng T B, Li D Y, Fang D N. Numerical simulation for thermal shock resistance of ultra-high temperature ceramics considering the effects of initial stress field[J]. Advances in Materials Science and Engineering, 2011, 2011: Article ID 757543, 7 pages.
    [22] Incropera F P, DeWitt D P, Bergman T L, Lavine A S.Fundamentals of Heat and Mass Transfer[M]. 6th ed. New York: John Wiley and Sons, 2007: 166-188.
    [23] Timoshenko S, Goodier J N. Theory of Elasticity[M]. 2nd ed. New York: McGraw-Hill Book Co, 1951: 399-404.
    [24] Song F, Liu Q N, Meng S H, Jiang C P. A universal Biot number determining the susceptibility of ceramics to quenching[J]. Europhysics Letters, 2009, 87(5): Article ID 54001, 3 pages.
    [25] Manson S S. Behavior of materials under conditions of thermal stress[R]. NACA Technical Note 2933, Washington, DC, July 1953.
    [26] Li W G, Fang D N. Effects of thermal environments on the thermal shock resistance of ultra-high temperature ceramics[J]. Modern Physics Letters B, 2008, 22(14): 1375-1380.
    [27] Manson S S. Thermal stresses:Ⅰ[J]. Machine Design, 1958, 30: 114-120.
    [28] Becher P F, Lewis III D, Garman K R, Gonzalez A C. Thermal-shock resistance of ceramics-size and geometry-effects in quench tests[J]. American Ceramic Society Bulletin, 1980, 59(5): 542-545.
    [29] Noda N, Matsunaga Y, Tsuji T, Nyuko H. Thermal shock problems of elastic bodies with a crack[J]. Journal of Thermal Stresses, 1989, 12(3): 369-383.
    [30] Collin M, Rowcliffe D. Analysis and prediction of thermal shock in brittle materials[J]. Acta Materialia, 2000, 48(8): 1655-1665.
    [31] Kim Y, Lee W J, Case E D. The measurement of the surface heat transfer coefficient for ceramics quenched into a water bath[J]. Materials Science and Engineering A, 1991, 145(1): L7-L11.
    [32] Opeka M M, Talmy I G, Wuchina E J, Zaykoski J A, Causey S J. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds[J]. Journal of the European Ceramic Society, 1999, 19(13/14): 2405-2414.
    [33] Wuchina E, Opeka M, Causey S, Buesking K, Spain J, Cull A, Routbort J, Guitierrez-Mora F. Designing for ultra high-temperature applications: the mechanical and thermal properties of HfB2, HfCx, HfNx, and αHf(N)[J]. Journal of Materials Science, 2004, 39(19): 5939-5949.
    [34] Loehman R, Corral E, Dumm H P, Kotula P, Tandon R. Ultra high temperature ceramics for hypersonic vehicle applications[R]. SAND 2006-2925, Albuquerque, NM, June 2006.
  • 加载中
计量
  • 文章访问数:  1643
  • HTML全文浏览量:  67
  • PDF下载量:  1223
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-29
  • 修回日期:  2012-03-28
  • 刊出日期:  2012-11-15

目录

    /

    返回文章
    返回