留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Richardson数对后台阶流动熵产的影响

陈胜

陈胜. Richardson数对后台阶流动熵产的影响[J]. 应用数学和力学, 2012, 33(11): 1330-1339. doi: 10.3879/j.issn.1000-0887.2012.11.008
引用本文: 陈胜. Richardson数对后台阶流动熵产的影响[J]. 应用数学和力学, 2012, 33(11): 1330-1339. doi: 10.3879/j.issn.1000-0887.2012.11.008
CHEN Sheng. Effect of Richardson Number on Entropy Generation Over a Backward Facing Step[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1330-1339. doi: 10.3879/j.issn.1000-0887.2012.11.008
Citation: CHEN Sheng. Effect of Richardson Number on Entropy Generation Over a Backward Facing Step[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1330-1339. doi: 10.3879/j.issn.1000-0887.2012.11.008

Richardson数对后台阶流动熵产的影响

doi: 10.3879/j.issn.1000-0887.2012.11.008
详细信息
    通讯作者:

    陈胜(1977—),男,湖北武汉人,副教授,博士(Tel:+86-27-87542417; Fax: +86-27-87544779; E-mail:shengchen.hust@gmail.com).

  • 中图分类号: TK01+1

Effect of Richardson Number on Entropy Generation Over a Backward Facing Step

  • 摘要: 后台阶流动是研究伴随有传热现象的分离流动的常用模型.虽然Richardson数的改变会明显影响分离流动的流动和传热特性,但是迄今为止关于Richardson数对后台阶流动熵产影响的研究依然很少.基于求解熵产方程,第一次系统研究Richardson数对后台阶流动熵产的影响.对于求解熵产方程所需的速度和温度等变量,通过格子Boltzmann方法来得到.通过上述工作可以发现,后台阶流动中熵产和Bejan数的分布随Richardson数变化显著.总熵产数是Richardson数的单调减函数而平均Bejan数是Richardson数的单调增函数.
  • [1] Leone Jr J M. Open boundary condition symposium benchmark solution: stratified flow over a backward-facing step[J]. International Journal for Numerical Methods in Fluids, 1990, 11(7): 969-984.
    [2] Armaly B F, Durst F, Pereira J C F, Schonung B. Experimental and theoretical investigation of backward-facing step flow[J]. Journal of Fluid Mechanics, 1983, 127: 473-496.
    [3] Le H, Moin P, Kim J. Direct numerical simulation of turbulent flow over a backward-facing step[J]. Journal of Fluid Mechanics, 1997, 330: 349-374.
    [4] Ramsak M, Skerget L, Hribersek M, Zunic Z. A multidomain boundary element method for unsteady laminar flow using stream function vorticity equations[J]. Engineering Analysis With Boundary Elements, 2005, 29(1): 1-14.
    [5] Calle J L D, Devloo P R B, Gomes S M. Stabilized discontinuous Galerkin method for hyperbolic equations[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(17): 1861-1874.
    [6] Creuse E, Giovannini A, Mortazavi I. Vortex simulation of active control strategies for transitional backward-facing step flows[J]. Computers and Fluids, 2009, 38(7): 1348-1360.
    [7] Abu-Mulaweh H I. A review of research on laminar mixed convection flow over backward- and forward-facing steps[J]. International Journal of Thermal Sciences, 2003, 42(9): 897-909.
    [8] Ho C, Tai Y. Micro-electro-mechanical-systems (MEMS) and fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 579-612.
    [9] Karniadakis G E, Beskok A. Micro Flows Fundamentals and Simulation[M]. New York: Springer-Verlag, 2002: 55-70.
    [10] Bejan A. Entropy Generation Through Heat and Fluid Flow[M]. 2nd ed. New York: Wiley Interscience, 1994: 200-210.
    [11] Abu-Nada E. Investigation of entropy generation over a backward facing step under bleeding conditions[J]. Energy Conversion and Management, 2008, 49(11): 3237-3242.
    [12] Abu-Nada E. Numerical prediction of entropy generation in separated flows[J]. Entropy, 2005, 7(4): 234-252.
    [13] Abu-Nada E. Entropy generation due to heat and fluid flow in backward facing step flow with various expansion ratios[J]. International Journal of Energy, 2006, 3(4): 419-435.
    [14] Chen S, Liu Z, Shi B, Zheng C G. Computation of gas-solid flows by finite difference Boltzmann equation[J]. Applied Mathematics and Computation, 2006, 173(1): 33-49.
    [15] Chen S, Shi B, Liu Z, He Z, Guo Z L, Zheng C G. Lattice-Boltzmann simulation of particle-laden flow over a backward-facing step[J]. Chinese Physics, 2004, 13(10): 1657-1664.
    [16] Qian Y, D’Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17: 479-484.
    [17] Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation: theory and applications[J]. Physics Report, 1992, 222(3): 145-197.
    [18] Chen S, Doolen G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329-364.
    [19] Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond[M]. Oxford: Oxford University Press, 2001: 10-52.
    [20] Chen S, Krafczyk M. Entropy generation in turbulent natural convection due to internal heat generation[J]. International Journal of Thermal Sciences, 2009, 48(10): 1978-1987.
    [21] Lioua K, Oztop H F, Borjini M N, Al-Salemc K. Second law analysis in a three dimensional lid-driven cavity[J]. International Communications in Heat and Mass Transfer, 2011, 38(10): 1376-1383.
    [22] Kuo L S, Chen P H. Numerical implementation of thermal boundary conditions in the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 529-532.
  • 加载中
计量
  • 文章访问数:  1548
  • HTML全文浏览量:  74
  • PDF下载量:  865
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-17
  • 修回日期:  2012-05-05
  • 刊出日期:  2012-11-15

目录

    /

    返回文章
    返回