留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑主应力轴旋转的土体本构关系研究进展

董彤 郑颖人 刘元雪 阿比尔的

董彤, 郑颖人, 刘元雪, 阿比尔的. 考虑主应力轴旋转的土体本构关系研究进展[J]. 应用数学和力学, 2013, 34(4): 327-335. doi: 10.3879/j.issn.1000-0887.2013.04.001
引用本文: 董彤, 郑颖人, 刘元雪, 阿比尔的. 考虑主应力轴旋转的土体本构关系研究进展[J]. 应用数学和力学, 2013, 34(4): 327-335. doi: 10.3879/j.issn.1000-0887.2013.04.001
DONG Tong, ZHENG Ying-ren, LIU Yuan-xue, Abi Erdi. Research Progress of the Soil Constitutive Relation Considering Principal Stress Axes Rotation[J]. Applied Mathematics and Mechanics, 2013, 34(4): 327-335. doi: 10.3879/j.issn.1000-0887.2013.04.001
Citation: DONG Tong, ZHENG Ying-ren, LIU Yuan-xue, Abi Erdi. Research Progress of the Soil Constitutive Relation Considering Principal Stress Axes Rotation[J]. Applied Mathematics and Mechanics, 2013, 34(4): 327-335. doi: 10.3879/j.issn.1000-0887.2013.04.001

考虑主应力轴旋转的土体本构关系研究进展

doi: 10.3879/j.issn.1000-0887.2013.04.001
基金项目: 国家重点基础研究发展计划(973计划)(重大工程灾变滑坡演化与控制的基础研究)资助项目(2011CB710606)
详细信息
    作者简介:

    董彤(1990—),男,山东新泰人,硕士生(通讯作者.E-mail:dt0706@126.com).

  • 中图分类号: TU431

Research Progress of the Soil Constitutive Relation Considering Principal Stress Axes Rotation

  • 摘要: 对目前国内外考虑主应力轴旋转的试验研究及本构模型研究进行了总结分析,并对进一步研究提出了相应的建议.基于不同的加载条件,从纯主应力轴旋转和耦合主应力轴旋转两个方面,较全面的描述了主应力轴旋转情况下土体的基本变形特性,并对考虑主应力轴旋转的土体变形试验提出了进一步研究的建议.较为系统地评述了当前较有代表性的考虑主应力轴旋转的土体本构模型(边界面模型、多机构模型、运动硬化模型和广义塑性模型),得出了广义塑性模型更适合用来描述考虑主应力轴旋转的土体变形特性的结论.总结未来考虑主应力轴旋转的土体本构关系研究的主要方向是:把握主应力轴旋转情况下土体变形的本质特性,建立推理严密、形式简单、适用方便的本构模型,并用来指导工程实践.
  • [1] Grabe P J, Clayton C R I. Effects of principal stress rotation on permanent deformation in rail track foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(4):555-565.
    [2] Bohnhoff M, Grosser H, Dresen G. Strain partitioning and stress rotation at the North Anatolian fault zone from aftershock focal mechanisms of the 1999 Izmit M_w=7.4 earthquake[J].Geophysical Journal International,2006, 116(1):373-385.
    [3] 张启辉, 赵锡宏. 主应力轴旋转对剪切带形成的影响分析[J]. 岩土力学, 2000, 21(1):32-35.(ZHANG Qi-hui, ZHAO Xi-hong. An influence on shear band formation of the rotation of principal stress directions[J]. Rock and Soil Mechanics, 2000, 21(1):32-35.(in Chinese))
    [4] Diederichs M S, Kaiser P K, Eberhardt E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics & Mining Sciences,2004, 41(5):785-812.
    [5] 罗强, 王忠涛, 栾茂田, 杨蕴明, 陈培震.非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J].岩土力学, 2011, 32(supp 1):732-737.(LUO Qiang, WANG Zhong-tao, LUAN Mao-tian, YANG Yun-ming, CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. Rock and Soil Mechanics, 2011, 32(supp 1):732-737. (in Chinese))
    [6] 姜洪伟, 赵锡宏. 主应力轴旋转对软土塑性变形影响分析[J]. 上海力学, 1997,18(2): 140146.(JIANG Hong-wei, ZHAO Xi-hong. The impact analysis of principal stress rotation on plastic deformation[J]. Shanghai Mechanical, 1997, 18(2):140-146. (in Chinese))
    [7] Symes M T, Gens A, Hight D W. Drained principal stress rotation in saturated sand[J]. Geotechnique,1988, 38(1):59-81.
    [8] Lade P V.Elasto-plastic behavior of K0-consonidation clays in torsion shear tests[J].Soils and Foundations, 1989, 29(2):127-140.
    [9] 刘元雪, 郑颖人. 含主应力轴旋转的土体本构模型研究进展[J].力学进展, 2000, 30(4):597-604.(LIU Yuan-xue, ZHENG Ying-ren. Research development of the soil constitutive model containing principal stress axes rotation [J]. Advances in Mechanics,2000,30(4):597-604.(in Chinese))
    [10] 刘元雪, 郑颖人, 陈正汉. 含主应力轴旋转的土体一般应力应变关系[J]. 应用数学和力学, 1998, 19(5):407-413.(LIU Yuan-xue, ZHENG Ying-ren, CHEN Zhen-han. The general stress strain relation of soils involving the rotation of principal stress axes[J]. Applied Mathematics and Mechanics(English Edition), 1998, 19(5): 437-444.)
    [11] 沈扬. 考虑主应力方向变化的原状软粘土试验研究[D]. 杭州:浙江大学, 2007.(SHEN Yang. Experimental study on effect of variation of principal stress orientation on undisturbed soft clay[D]. Hangzhou:Zhejiang University, 2007. (in Chinese))
    [12] 童朝霞. 应力主轴循环旋转条件下砂土的变形规律与本构模型研究[D]. 北京:清华大学, 2008.(TONG Zhaoxia. Research on deformation behavior and constitutive model of sands under cyclic rotation of principal stress axes[D]. Beijing: Tsinghua University, 2008.(in Chinese))
    [13] 金丹. 主应力方向旋转变化条件下饱和砂土的动力特性试验研究[D]. 大连:大连理工大学, 2009.(JIN Dan. Exprimental study on effect of rotation of principal stress orientation on saturated sand[D].Dalian:Dalian University of Technology,2009.(in Chinese))
    [14] Arthur J R F, Chan K S, Dunstan T. Induced anisotropy in a sand[J].Geotechnique, 1977, 27(1):13-30.
    [15] Miura K, Miura S, Toki S. Deformation behavior of anisotropic sand under principal stress axes rotation[J].Soils and Foundations,1986, 26(1):36-52.
    [16] Nakata Y, Hyodo M. Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations, 1998, 38(2):115-128.
    [17] Wijewickreme D, Vaid Y P. Behavior of loose sand under simultaneous increase in stress ratio and principal stress rotation[J].Canadian Geotechnical Journal, 1993, 30(6):953-964.
    [18] Symes M J, Shibuya S, Hight D W, Gens A. Liquefaction with principal stress rotation[C]//Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, Vol 1. San Francisco, 1985:1919-1922.
    [19] Sivathayalan S, Vaid Y P. Influence of generalized initial state and principal stress rotation on the undrained response of sands[J].Canadian Geotechnical Journal, 2002, 39(1): 63-76.
    [20] 郑颖人, 孔亮. 岩土塑性力学[M]. 北京:中国建筑工业出版社, 2010: 126-142.(ZHENG Ying-ren, KONG Liang.Geotechnical Plastic Mechanics [M]. Beijing: China Architecture & Building Press, 2010: 126-142. (in Chinese))
    [21] Pastor M, Zienkiewicz O C, Chan A H C. Generalized plasticity and the modelling of soil behaviour[J].International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151-190.
    [22] Gutierrez M, Ishihara K, Towhata I. Model for the deformation of sand during rotation of principal stress directions[J].Soils and Foundations, 1993, 33(3): 105-117.
    [23] Gutierrez M, Ishihara K. Noncoaxiality and energy dissipation in granular materials[J].Soils and Foundations, 2000, 40(2): 49-59.
    [24] Li X S, Dafalias Y F. Constitutive modeling of inherently anisotropic sand behavior.[J].Geotech Geoenviron Engng, 2002, 128(10): 868-880.
    [25] YANG Yun-ming, YU Hai-sui. A non-coaxial critical state soil model and its application to simple shear simulations[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(13): 1369-1390.
    [26] 周正明.土坝蓄水期变形特性研究[D].南京:南京水利科学研究院, 1987. (ZHOU Zheng-ming. Research on deformation characteristics of earth dam during storage period[D]. Nanjing:Nanjing Hydraulic Research Institute,1987. (in Chinese))
    [27] Lizuka A,Yatomi C, Yashima A, Sano I, Ohta H. The effect of stress induced anisotropy on shear band[J].Archive of Applied Mechanics, 1992, 62(2): 104-114.
    [28] Nakai T, Hoshikawa T. Kinematic hardening models for clay in threedimensional stress[C]//Proceeding of the 7th International Conference on Computer Methods and Advances in Geomechanics, Cairns, Australia, 1991, 1: 655-660.
    [29] Nakai T, Matsuoka H. A generalized elastoplastic constitutive model for clay in threedimensional stress[J].Soils and Foundations, 1986, 26(3): 81-98.
    [30] Lade P V, Inel S. Rotational kinematic hardening model for sand—part I:concept of rotation yield and plastic potential surfaces[J].Computers and Geotechnics, 1997, 21(3): 183-216.
    [31] Li X S, Dafalias Y F. A consitutibve framework of anisotropic sand including nonproportional loading[J].Geotechnique, 2004, 54(1): 41-55.
    [32] YANG Yun-ming, YU Hai-sui. A kinematic hardening soil model considering the principal stress rotation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012. DOI: 10.1002/nag.2138
    [33] Pande G N, Sharma K G. Multilaminate model of clays—a numerical evaluation of the influence of rotation of the principal stress axes[J].International Journal for Numerical and Analytical Methods in Geomechanics, 1983, 7(4): 397-418.
    [34] Nishimura S, Towhata I. A three-dimensional stress-strain model of sand undergoing cyclic rotation of principal stress axes[J].Soils and Foundations, 2004, 44(2): 103-116.
    [35] Matsuoka H, Sakakibara K. A constitutive model for sands and clays evaluating principal stress rotation[J].Soils and Foundations,1987, 27(4): 73-88.
  • 加载中
计量
  • 文章访问数:  1712
  • HTML全文浏览量:  110
  • PDF下载量:  1426
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-28
  • 修回日期:  2013-04-03
  • 刊出日期:  2013-04-15

目录

    /

    返回文章
    返回