留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电池系统建模中Butler-Volmer方程的同伦分析求解

宋辉 李芬 徐献芝

宋辉, 李芬, 徐献芝. 电池系统建模中Butler-Volmer方程的同伦分析求解[J]. 应用数学和力学, 2013, 34(4): 373-382. doi: 10.3879/j.issn.1000-0887.2013.04.006
引用本文: 宋辉, 李芬, 徐献芝. 电池系统建模中Butler-Volmer方程的同伦分析求解[J]. 应用数学和力学, 2013, 34(4): 373-382. doi: 10.3879/j.issn.1000-0887.2013.04.006
SONG Hui, LI Fen, XU Xian-zhi. Analytical Solution of Butler-Volmer Equation in Battery System Modeling[J]. Applied Mathematics and Mechanics, 2013, 34(4): 373-382. doi: 10.3879/j.issn.1000-0887.2013.04.006
Citation: SONG Hui, LI Fen, XU Xian-zhi. Analytical Solution of Butler-Volmer Equation in Battery System Modeling[J]. Applied Mathematics and Mechanics, 2013, 34(4): 373-382. doi: 10.3879/j.issn.1000-0887.2013.04.006

电池系统建模中Butler-Volmer方程的同伦分析求解

doi: 10.3879/j.issn.1000-0887.2013.04.006
基金项目: 国家自然科学基金资助项目(10872193)
详细信息
    作者简介:

    宋辉(1983—), 男, 山西人, 博士(Tel: +86-551-63602476;E-mail:songhui@mail.ustc.edu.cn);徐献芝, 男, 安徽人, 副教授(通讯作者. Tel: +86-551-63607562; E-mail:xuxz@ustc.edu.cn).

  • 中图分类号: O29;O175.8;O646

Analytical Solution of Butler-Volmer Equation in Battery System Modeling

  • 摘要: Butler-Volmer方程是电化学系统中描述电极动力学过程的本构方程,具有强非线性.为了对这一方程(耦合两个Ohm方程)进行解析求解,在同伦分析方法的框架下,发展了满足简单条件的广义非线性算子的算法,以取代原同伦分析中的非线性算子.该广义非线性算子的构造保证了高阶形变方程的线性特征.这一方法的有效性通过一些算例得到了验证.最后通过同伦分析方法对Butler-Volmer方程进行了求解,结果显示过电位和电流密度的级数解析解与数值解吻合很好,并有很好的收敛效率.
  • [1] 廖世俊. 超越摄动: 同伦分析方法导论[M]. 陈晨, 徐航 译. 北京: 科学出版社, 2006. (LIAO Shi-jun.Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. CHEN Chen, XU Hang transl. Beijing: Science Press, 2006. (in Chinese))
    [2] Liao S J. A kind of approximate solution technique which does not depend upon small parameters—Ⅱ: an application in fluid mechanics[J].International Journal of Non-Linear Mechanics,1997, 32(5): 815-822.
    [3] Liao S J. A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate[J].Journal of Fluid Mechanics,1999, 385(1): 101-128.
    [4] Liao S J, Campo A. Analytic solutions of the temperature distribution in Blasius viscous flow problems[J].Journal of Fluid Mechanics,2002, 453: 411-425.
    [5] Wang C, Zhu J M, Liao S J, Pop I. On the explicit analytic solution of Cheng-Chang equation[J].International Journal of Heat and Mass Transfer,2003, 46(10): 1855-1860.
    [6] Ayub M, Rasheed A, Hayat T. Exact flow of a third grade fluid past a porous plate using homotopy analysis method[J].International Journal of Engineering Science,2003, 41(18): 2091-2103.
    [7] Zhu S P. An exact and explicit solution for the valuation of American put options[J].Quantitative Finance,2006, 6(3): 229-242.
    [8] ZHU Song-ping. A closedform analytical solution for the valuation of convertible bonds with constant dividend yield[J].Anziam Journal,2006, 47(4): 477-494.
    [9] Wu J, Srinivasan V, Xu J, Wang C Y. Newton-Krylov-multigrid algorithms for battery simulation[J].Journal of the Electrochemical Society,2002, 149(10): A1342.
    [10] 宋辉. 锌电极放电过程数值模拟及Butler-Volmer方程组的解析求解[D]. 博士论文. 合肥:中国科学技术大学, 2012. (SONG Hui. Numerical simulation of zinc electrode discharging process and analytical solution of the ButlerVolmer equations[D]. Ph D Dissertation.Hefei: University of Science and Technology China, 2012. (in Chinese))
    [11] 李芬. 锌空气电池之气体扩散电极性能研究[D]. 博士论文. 合肥: 中国科学技术大学, 2010. (LI Fen. Research on the performance of gas diffusion electrodes for zinc-air fuel cells[D]. Ph D Dissertation.Hefei:University of Science and Technology China, 2010. (in Chinese))
    [12] Duan T. Extension of Newman's method to electrochemical reactiondiffusion in a fuel cell catalyst layer[J].Journal of Power Sources,2002, 107(1): 24-33.
    [13] Liao S, Tan Y. A general approach to obtain series solutions of nonlinear differential equations[J].Studies in Applied Mathematics,2007, 119(4): 297-354.
    [14] Hassan H N, ElTawil M A. An efficient analytic approach for solving twopoint nonlinear boundary value problems by homotopy analysis method[J].Mathematical Methods in the Applied Sciences,2011, 34(8): 977-989.
    [15] 牛照. 非线性问题的优化同伦分析方法[D]. 硕士论文. 上海:上海交通大学, 2010. (NIU Zhao. The optimal homotopy analysis method for nonlinear problems[D]. Master Degree Dissertation.Shanghai: Shanghai Jiao Tong University, 2010. (in Chinese))
  • 加载中
计量
  • 文章访问数:  3123
  • HTML全文浏览量:  280
  • PDF下载量:  1584
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-20
  • 修回日期:  2013-04-03
  • 刊出日期:  2013-04-15

目录

    /

    返回文章
    返回