留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有非局部源的快扩散方程组解的熄灭

王娟 陈玉娟 张海星 陆晨

王娟, 陈玉娟, 张海星, 陆晨. 具有非局部源的快扩散方程组解的熄灭[J]. 应用数学和力学, 2013, 34(4): 427-435. doi: 10.3879/j.issn.1000-0887.2013.04.011
引用本文: 王娟, 陈玉娟, 张海星, 陆晨. 具有非局部源的快扩散方程组解的熄灭[J]. 应用数学和力学, 2013, 34(4): 427-435. doi: 10.3879/j.issn.1000-0887.2013.04.011
WANG Juan, CHEN Yu-juan, ZHANG Hai-xing, LU Chen. Extinction for a Class of Fast Diffusion System With Nonlocal Sources[J]. Applied Mathematics and Mechanics, 2013, 34(4): 427-435. doi: 10.3879/j.issn.1000-0887.2013.04.011
Citation: WANG Juan, CHEN Yu-juan, ZHANG Hai-xing, LU Chen. Extinction for a Class of Fast Diffusion System With Nonlocal Sources[J]. Applied Mathematics and Mechanics, 2013, 34(4): 427-435. doi: 10.3879/j.issn.1000-0887.2013.04.011

具有非局部源的快扩散方程组解的熄灭

doi: 10.3879/j.issn.1000-0887.2013.04.011
基金项目: 国家自然科学基金资助项目(11271209); 江苏省教育厅自然科学(面上)基金资助项目(12KJB110018);2013年江苏省政府留学奖学金项目;全国大学生实践创新计划基金资助项目(201210304005)
详细信息
    作者简介:

    王娟(1979—), 女, 江苏南通人, 硕士生(E-mail:tzsgwjg@126.com);陈玉娟(1969—), 女, 江苏南通人, 教授(通讯作者. E-mail:nttccyj@ntu.edu.cn).

  • 中图分类号: O175.29

Extinction for a Class of Fast Diffusion System With Nonlocal Sources

  • 摘要: 利用上下解的方法和积分估计, 研究了一类具有非局部源的快扩散方程组解熄灭的充分条件,证明当参数和初值满足一定条件时,解在有限时刻发生熄灭.
  • [1] Kalashnikov A S.Some problems of the qualitative theory of second order nonlinear degenerate parabolic equations[J].Uspekhi Mat Nauk,1987, 42(2): 135-176.
    [2] 顾永耕. 抛物方程的解的熄灭的充要条件[J]. 数学学报, 1994, 37(1): 73-79.(GU Yong-geng. Necessary and sufficient conditions of extinction of solution on parabolic equations[J].Acta Math Sinica,1994, 37(1): 73-79.(in Chinese))
    [3] Peletier L A, Zhao J N. Large time behavior of solution of the porous media equation with absorption: the fast diffusion case[J].Nonlinear Anal,1991, 17(10): 991-1009.
    [4] Galaktionov V A, Vazquez J L. Asymptotic behaviour of nonlinear parabolic equations with critical exponents[J].A Dynamical System Approach, J Funct Anal,1991, 100(2): 435-462.
    [5] Galaktionov V A, Vazquez J L.Extinction for a quasilinear heat equation with absorption I[J]. Technique of Intersection Comparison Comm Partial Differential Equations,1994, 19(7/8): 1075-1106.
    [6] Galaktionov V A, Vazquez J L.Extinction for a quasilinear heat equation with absorption II[J]. A Dynamical System Approach Comm Partial Differential Equations,1994, 19(7/8): 1107-1137.
    [7] Tian Y, Mu C L.Extinction and nonextinction for ap-Laplacian equation with nonlinear source[J].Nonlinear Anal,2008, 69(8): 2422-2431.
    [8] Ferreira R, Vazquez J L.Extinction behavior for fast diffusion equations with absorption[J].Nonlinear Anal,2001, 43(8): 943-985.
    [9] Yin J X, Li J, Jin C H.Non-extinction and critical exponent for a polytropic filtration equation[J].Nonl Anal,2009, 71(1/2): 347-357.
    [10] Yin J X, Jin C H.Critical extinction and blowup exponents for fast diffusive polytropic filtration equation with sources[J]. Proc Edinburgh Math Soc,2009, 52(2): 419-444.
    [11] Yin J X, Jin C H.Critical extinction and blow-up exponents for fast diffusivep-Laplacian with sources[J].Math Method Appl Sci,2007, 30(10): 1147-1167.
    [12] Yuan H J, Lian S Z, Gao W J, Xu X J, Cao C L. Extinction and positive for the evolutionp-Laplacian equation in R-N [J]. Nonl Anal TMA,2005, 60(6): 1085-1091.
    [13] Han Y Z, Gao W J.Extinction for a fast diffusion equation with a nonlinear nonlocal source[J].Arch Math,2011, 97(4): 353-363.
    [14] Friedman A, Mcleod B.Blow-up of positive solutions of semilinear heat equations[J].Indiana Univ Math J,1985, 34(2): 425-447.
    [15] Furter J, Grinfeld M.Local vs nonlocal interactions in population dynamics[J].J Math Biology,1989, 27(1): 65-80.
    [16] Lu H L, Wang M X. Global solutions and blowup problems for a nonlinear degenerate parabolic system coupled via nonlocal sources[J].J Math Anal Appl,2007, 333(2): 984-1007.
    [17] Zheng S N, Wang L D. Blowup rate and profile for a degenerate parabolic system coupled via nonlocal sources[J]. Comput Math Appl,2006, 52(10/11): 1387-1402.
    [18] Deng W B, Li Y X, Xie C H.Blow-up and global existence for a nonlocal degenerate parabolic system[J].J Math Anal Appl,2003, 277(1): 199-217.
    [19] Du L L.Blow-up for a degenerate reactiondiffusion system with nonlinear nonlocal sources[J].J Comput Appl Math,2007, 202(2): 237-247.
  • 加载中
计量
  • 文章访问数:  1604
  • HTML全文浏览量:  146
  • PDF下载量:  1135
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-02
  • 修回日期:  2013-03-19
  • 刊出日期:  2013-04-15

目录

    /

    返回文章
    返回