留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两球形颗粒间横向毛细力的格子Boltzmann研究

梁功有 曾忠 张永祥 张良奇 谢海琼 陈昱

梁功有, 曾忠, 张永祥, 张良奇, 谢海琼, 陈昱. 两球形颗粒间横向毛细力的格子Boltzmann研究[J]. 应用数学和力学, 2013, 34(5): 445-453. doi: 10.3879/j.issn.1000-0887.2013.05.002
引用本文: 梁功有, 曾忠, 张永祥, 张良奇, 谢海琼, 陈昱. 两球形颗粒间横向毛细力的格子Boltzmann研究[J]. 应用数学和力学, 2013, 34(5): 445-453. doi: 10.3879/j.issn.1000-0887.2013.05.002
LIANG Gong-you, ZENG Zhong, ZHANG Yong-xiang, ZHANG Liang-qi, XIE Hai-qiong, CHEN Yu. Lateral Capillary Forces Between Two Spherical Particles: a Lattice Boltzmann Study[J]. Applied Mathematics and Mechanics, 2013, 34(5): 445-453. doi: 10.3879/j.issn.1000-0887.2013.05.002
Citation: LIANG Gong-you, ZENG Zhong, ZHANG Yong-xiang, ZHANG Liang-qi, XIE Hai-qiong, CHEN Yu. Lateral Capillary Forces Between Two Spherical Particles: a Lattice Boltzmann Study[J]. Applied Mathematics and Mechanics, 2013, 34(5): 445-453. doi: 10.3879/j.issn.1000-0887.2013.05.002

两球形颗粒间横向毛细力的格子Boltzmann研究

doi: 10.3879/j.issn.1000-0887.2013.05.002
基金项目: 国家自然科学基金资助项目(10872222;50921063);高等学校博士学科点专项科研基金资助项目(20110191110037)
详细信息
    作者简介:

    梁功有(1983—),男,河南人,博士生(E-mail: gyliang2003@gmail.com);曾忠(1968—),教授,博士生导师(通讯作者.E-mail: zzeng@cqu.edu.cn)

  • 中图分类号: O357.1

Lateral Capillary Forces Between Two Spherical Particles: a Lattice Boltzmann Study

  • 摘要: 采用以Shan-Chen多组分模型为基础的格子Boltzmann-伪固体模型对两颗粒间的浮体和浸润横向毛细力展开数值模拟研究,其中流体-固体间的相互作用及颗粒润湿性质在介观层次上采用简单形式得以充分考虑.三维测试表明,与已有理论解相比,成功再现了横向毛细力与颗粒间距的“1/L”关系,并确认了浸润横向毛细力与表面张力间的线性关系.这表明可进一步应用该模型研究横向毛细力作用下的颗粒自聚集等现象.
  • [1] Grzelczak M, Vermant J, Furst E M, LizMarzn L M. Directed selfassembly of nanoparticles[J].ACS Nano,2010,4(7): 3591-3605.
    [2] Kralchevsky P A, Denkov N D. Capillary forces and structuring in layers of colloid particles[J].Curr Opin Colloid Interface Sci,2001,6(4): 383-401.
    [3] Madivala B, Vandebril S, Fransaer J, Vermant J. Exploiting particle shape in solid stabilized emulsions[J]. Soft Matter,2009,5(8): 1717-1727.
    [4] Furst E M. Directing colloidal assembly at fluid interfaces[J].PNAS,2011,108(52): 20853-20854.
    [5] Kralchevsky P A, Nagayama K. Capillary forces between colloidal particles[J].Langmuir,1994,10(1): 23-36.
    [6] Li Q, Jonas U, Zhao X S, Kappl M. The forces at work in colloidal selfassembly: a review on fundamental interactions between colloidal particles[J].AsiaPac J Chem Eng,2008,3(3): 255-268.
    [7] Dushkin C D, Kralchevsky P A, Yoshimura H, Nagayama K. Lateral capillary forces measured by torsion microbalance[J].Phys Rev Lett,1995,75(19): 3454-3457.
    [8] Leonardo R Di, Saglimbeni F, Ruocco G. Very-long-range nature of capillary interactions in liquid films[J].Phys Rev Lett,2008,100(10): 106103(1-3).
    [9] Nishikawa H, Maenosono S, Yamaguchi Y, Okubo T. Selfassembling process of colloidal particles into twodimensional arrays induced by capillary immersion force: a simulation study with discrete element method[J].J Nanopart Res,2003,5(1): 103-110.
    [10] Rabideau B D, Pell L E, Bonnecaze R T, Korgel B A. Observation of longrange orientational order in monolayers of polydisperse colloids[J].Langmuir,2007,23(3): 1270-1274.
    [11] Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation: theory and applications[J].Phys Rep,1992,222(3): 145-197.
    [12] Chen S, Doolen G. Lattice Boltzmann method for fluid flows[J].Annu Rev Fluid Mech,1998,30(1): 329-364.
    [13] 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009.(GUO Zhao-li, ZHENG Chu-guang.Theory and Applications of Lattice Boltzmann Method [M]. Beijing: Science Press, 2009.(in Chinese))
    [14] Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation—part 1: theoretical foundation[J].J Fluid Mech,1994,271: 285-309.
    [15] Aidun C, Lu Y. Lattice Boltzmann simulation of solid particles suspended in fluid[J].J Stat Phys,1995,81(1): 49-61.
    [16] Stratford K, Adhikari R, Pagonabarraga I, Desplat J. Lattice Boltzmann for binary fluids with suspended colloids[J].J Stat Phys,2005,121(1): 163-178.
    [17] Jansen F, Harting J. From bijels to pickering emulsions: a lattice Boltzmann study[J].Phys Rev E,2011,83(4): 046707(1-11).
    [18] Shinto H, Komiyama D, Higashitani K. Lateral capillary forces between solid bodies on liquid surface: a lattice Boltzmann study[J].Langmuir,2006,22(5): 2058-2064.
    [19] Tanaka H, Araki T. Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics[J].Phys Rev Lett,2000,85(6): 1338-1341.
    [20] Onishi J, Kawasaki A, Chen Y, Ohashi H. Lattice Boltzmann simulation of capillary interactions among colloidal particles[J].Comput Math Appl,2008,55(7): 1541-1553.
    [21] Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components[J].Phys Rev E,1993,47(3): 1815-1819.
    [22] Liang G, Chen Y, Zeng Z, Ohashi H, Chen S. Simulation of selfassemblies of colloidal particles partially immersed in a liquid layer on a substrate with a lattice Boltzmann pseudo-solid mode[R]. Bangalore: DSFD, 2012.
    [23] Shan X. Multicomponent lattice Boltzmann model from continuum kinetic theory[J].Phys Rev E,2010,81(4): 045701(1-4).
    [24] Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J].Phy Rev E,2002,65(4): 46308(1-6).
    [25] Yunker P J, Still T, Lohr M A, Yodh A G. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J].Nature,2011,476(7360): 308-311.
  • 加载中
计量
  • 文章访问数:  1976
  • HTML全文浏览量:  107
  • PDF下载量:  1699
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-25
  • 修回日期:  2013-04-07
  • 刊出日期:  2013-05-15

目录

    /

    返回文章
    返回