留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交各向异性轴对称位势问题的Trefftz有限元分析

王克用 黄争鸣 李培超 刘博

王克用, 黄争鸣, 李培超, 刘博. 正交各向异性轴对称位势问题的Trefftz有限元分析[J]. 应用数学和力学, 2013, 34(5): 462-469. doi: 10.3879/j.issn.1000-0887.2013.05.004
引用本文: 王克用, 黄争鸣, 李培超, 刘博. 正交各向异性轴对称位势问题的Trefftz有限元分析[J]. 应用数学和力学, 2013, 34(5): 462-469. doi: 10.3879/j.issn.1000-0887.2013.05.004
WANG Ke-yong, HUANG Zheng-ming, LI Pei-chao, LIU Bo. Trefftz Finite Element Analysis of Axisymmetric Potential Problems in Orthotropic Media[J]. Applied Mathematics and Mechanics, 2013, 34(5): 462-469. doi: 10.3879/j.issn.1000-0887.2013.05.004
Citation: WANG Ke-yong, HUANG Zheng-ming, LI Pei-chao, LIU Bo. Trefftz Finite Element Analysis of Axisymmetric Potential Problems in Orthotropic Media[J]. Applied Mathematics and Mechanics, 2013, 34(5): 462-469. doi: 10.3879/j.issn.1000-0887.2013.05.004

正交各向异性轴对称位势问题的Trefftz有限元分析

doi: 10.3879/j.issn.1000-0887.2013.05.004
基金项目: 上海高校青年骨干教师国内访问学者计划基金资助项目
详细信息
    作者简介:

    王克用(1975—),男,河北人,讲师,博士(通讯作者. E-mail: keyong.wang@hotmail.com).

  • 中图分类号: O343.1

Trefftz Finite Element Analysis of Axisymmetric Potential Problems in Orthotropic Media

  • 摘要: Trefftz有限元法(Trefftz finite element method, TFEM)因其独特的优良品质而备受关注.针对正交各向异性轴对称位势问题,提出了一种4节点四边形环状单元.在该单元模型中,首先假设两套独立的位势插值模式:即单元域内场和网线场,然后代入修正变分泛函并利用Gauss散度定理消除区域积分,最后根据驻值原理导得只含边界积分的单元刚度方程.数值算例表明了该单元的准确性、稳定性以及对网格畸变的不敏感性.
  • [1] Jirousek J, Leon N. A powerful finite element for plate bending[J].Computer Methods in Applied Mechanics and Engineering,1977,12(1): 77-96.
    [2] Trefftz E. Ein Gegenstück zum Ritz’schen Verfahren[C]//Proceedings of the 2nd International Congress on Applied Mechanics.Zurich, Switzerland, 1926: 131-137.
    [3] Qin Q H.The Trefftz Finite and Boundary Element Method [M]. Southampton: WIT Press, 2000.
    [4] Qin Q H, Wang H.MATLAB and C Programming for Trefftz Finite Element Methods [M]. Boca Raton: CRC Press, 2008.
    [5] Jirousek J, Venkatesh A. Hybrid Trefftz plane elasticity elements withp method capabilities[J].International Journal for Numerical Methods in Engineering,1992,35(7): 14431472.
    [6] Wang H, Qin Q H, Arounsavat D. Application of hybrid Trefftz finite element method to nonlinear problems of minimal surface[J].International Journal for Numerical Methods in Engineering,2007,69(6): 1262-1277.
    [7] Fu Z J, Qin Q H, Chen W. HybridTrefftz finite element method for heat conduction in nonlinear functionally graded materials[J].Engineering Computations: International Journal for ComputerAided Engineering and Software,2011,28(5): 578-599.
    [8] Cao L L, Wang H, Qin Q H. Fundamental solution based graded element model for steadystate heat transfer in FGM[J].Acta Mechanica Solida Sinica,2012,25(4): 377-392.
    [9] Wang K Y, Zhang L Q, Li P C. A fournode hybridTrefftz annular element for analysis of axisymmetric potential problems[J].Finite Elements in Analysis and Design,2012,60: 49-56.
    [10] 赵新娟, 赵吉义. 位势问题的杂交有限元算法研究[J]. 中原工学院学报, 2011,22(1): 59-61. (ZHAO Xin-juan, ZHAO Ji-yi. Potential problems in anisotropic solids using hybrid finite element model[J].Journal of Zhongyuan University of Technology,2011,22(1): 59-61. (in Chinese))
    [11] 王克用, 李培超, 张敏良. 正交各向异性位势问题的Trefftz有限元法[J]. 力学季刊, 2012,33(3): 499-506. (WANG Ke-yong, LI Pei-chao, ZHANG Min-liang. Trefftz finite element method for orthotropic potential problems[J].Chinese Quarterly of Mechanics,2012,33(3): 499506. (in Chinese))
    [12] Marczak R J, Denda M. New derivations of the fundamental solution for heat conduction problems in threedimensional general anisotropic media[J].International Journal of Heat and Mass Transfer,2011,54(15/16): 3605-3612.
  • 加载中
计量
  • 文章访问数:  2087
  • HTML全文浏览量:  219
  • PDF下载量:  1524
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-04
  • 修回日期:  2013-04-12
  • 刊出日期:  2013-05-15

目录

    /

    返回文章
    返回