留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拟合橡胶类材料非等双轴变形数据的显式超弹性势

李浩 章宇雨 肖衡

李浩, 章宇雨, 肖衡. 拟合橡胶类材料非等双轴变形数据的显式超弹性势[J]. 应用数学和力学, 2013, 34(5): 470-479. doi: 10.3879/j.issn.1000-0887.2013.05.005
引用本文: 李浩, 章宇雨, 肖衡. 拟合橡胶类材料非等双轴变形数据的显式超弹性势[J]. 应用数学和力学, 2013, 34(5): 470-479. doi: 10.3879/j.issn.1000-0887.2013.05.005
LI Hao, ZHANG Yu-yu, XIAO Heng. Explicit Form of Elastic Potentials Matching General Biaxial Test Data for Elastomers[J]. Applied Mathematics and Mechanics, 2013, 34(5): 470-479. doi: 10.3879/j.issn.1000-0887.2013.05.005
Citation: LI Hao, ZHANG Yu-yu, XIAO Heng. Explicit Form of Elastic Potentials Matching General Biaxial Test Data for Elastomers[J]. Applied Mathematics and Mechanics, 2013, 34(5): 470-479. doi: 10.3879/j.issn.1000-0887.2013.05.005

拟合橡胶类材料非等双轴变形数据的显式超弹性势

doi: 10.3879/j.issn.1000-0887.2013.05.005
基金项目: 国家教委211工程科研启动基金和上海大学创新基金资助项目(A.15-B002-09-032; A.10-0401-12001)
详细信息
    作者简介:

    李浩(1988—),男,湖南人,硕士生(E-mail: ennui123@qq.com);章宇雨(1988—),男,福建人,硕士生(E-mail: 276524382@qq.com);肖衡(1963—),男,湖南人,教授(通讯作者.E-mail: xiaoheng@shu.edu.cn).

  • 中图分类号: TU58+1.22; O343.5

Explicit Form of Elastic Potentials Matching General Biaxial Test Data for Elastomers

  • 摘要: 基于样条插值的直接方法,构造精确符合单轴和等双轴拉伸数据以及剪切数据的大变形超弹性势,给出显式表达式,避免了现有各方法寻求待定参数组达到近似拟合的复杂计算过程;推导了一般变形情形下的应力应变关系,对非等双轴拉伸实验进行了预测,并与Rivlin和Saunders的非等双轴拉伸实验数据进行了对比,预言结果与实验数据一致.
  • [1] Treloar L R G.The Physics of Rubber Elasticity [M]. Oxford: Oxford University Press, 1975.
    [2] Arruda E M, Boyce M C. A three-dimensional constitutive model for the large stretch behavour of rubber elastic materials[J].J Mech Phys Solids,1993,41(2):389-412.
    [3] Boyce M C. Direct comparison of the Gent and the ArrudaBoyce constitutive models of rubber elasticity[J].Rubber Chem Techn,1996,69(5): 781-785.
    [4] Boyce M C, Arruda E M. Constitutive models of rubber elasticity: a reriew[J].Rubber Chem Techn,2000,73(3): 504-523.
    [5] Treloar L R G, Riding G. A nongaussian theory for rubber in biaxial strain—I: mechanical properties[J].Proc R Soc Lond Ser A,1979,369(1737): 261-280.
    [6] Rivlin R S. Large elastic deformation of isotropic materials—Ⅰ,Ⅱ: fundamental concepts; some uniqueness theories for pure homogeneous deformations[J].Philos Trans Roy Soc Lond, Ser A,1948,240(822): 459-508.
    [7] Tschoegl N W. Constitutive equations for elastomers[J].J Appl Polymer Sc, A1,1971,9(7): 1959-1970.
    [8] James A G, Green A. Strain energy function of rubber—Ⅱ: the characterization of filled vulcanizates[J]. J Appl Polymer Sci,1975,19(8): 2319-2330.
    [9] Morman Jr K N, Pan T Y. Application of finiteelement analysis in the design of automotive elastomeric components[J].Rubber Chemistry And Technology,1988,61(3): 503-533.
    [10] Gent A N. A new constitutive relation for rubber[J].Rubber Chemistry and Technology,1996,〖STHZ〗 69(1): 59-61.
    [11] Ogden R W. Large deformation isotropic elasticityon the correlation of theory and experiment for incompressible rubberlike materials[J].Proc Roy Soc London A,1972,326(1567): 565-584.
    [12] Ogden R W.NonLinear Elastic Deformations [M]. Chichester: Ellis Horwood, 1984.
    [13] 李晓芳,杨晓翔.橡胶材料的超弹性本构模型[J]. 弹性体, 2005,15(1): 50-58. (LI Xiao-fang, YANG Xiao-xiang. A review of elastic constitutive model for rubber materials[J].China Elastomerics,2005,15(1): 50-58.(in Chinese))
    [14] Xiao H. An explicit, direct approach to obtaining multi-axial elastic potentials which exactly match data of four benchmark tests for incompressible rubberlike materials—part 1: incompressible deformations[J].Acta Mechanica,2012,223(9): 2039-2063.
    [15] Xiao H. An explicit, direct approach to obtain multi-axial elastic potentials which accurately match data of four benchmark tests for rubbery materials—part 2: general deformations[J].Acta Mechanica,2013,224(3):479-498.
    [16] Rivlin R S, Saunders D W. Large elastic deformations of isotropic materials—VII: experiments on the deformation of rubber[J].Phil Trans R Soc Lond A,1951,243(865): 251-288.
    [17] Xiao H. Hencky strain and Hencky model: extending history and ongoing tradition[J].Multidiscipline Modeling in Materials and Structures,2005,1(1):1-52.
    [18] Xiao H, Bruhns O T, Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate[J].Acta Mechanica,1997,124(1/4): 89-105.
    [19] Xiao H, Bruhns O T, Meyers A. Hypoelasticity model based upon the logarithmic stress rate[J].J Elasticity,1997,47(1): 51-68.
    [20] Xiao H, Bruhns O T, Meyers A. The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate[J].Proc Roy Soc London A,2000,456(2000): 1865-1882.
    [21] Xiao H, Bruhns O T, Meyers A. Basic issues concerning finite strain measures and isotropic stress-deformation relations[J]. J Elasticity,2002,67(1): 1-23.
    [22] Xiao H, Bruhns O T, Meyers A. Explicit dual stressstrain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress[J]. Acta Mechanica,2004,168(1/2): 21-33.
    [23] Xiao H, Chen L S. Hencky’s logarithmic strain measure and dual stressstrain and strainstress relations in isotropic finite hyperelasticity[J]. Int J Solids & Structures,2003,40(6): 1455-1463.
  • 加载中
计量
  • 文章访问数:  1555
  • HTML全文浏览量:  108
  • PDF下载量:  1276
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-25
  • 修回日期:  2013-04-10
  • 刊出日期:  2013-05-15

目录

    /

    返回文章
    返回