[1] |
Treloar L R G.The Physics of Rubber Elasticity [M]. Oxford: Oxford University Press, 1975.
|
[2] |
Arruda E M, Boyce M C. A three-dimensional constitutive model for the large stretch behavour of rubber elastic materials[J].J Mech Phys Solids,1993,41(2):389-412.
|
[3] |
Boyce M C. Direct comparison of the Gent and the ArrudaBoyce constitutive models of rubber elasticity[J].Rubber Chem Techn,1996,69(5): 781-785.
|
[4] |
Boyce M C, Arruda E M. Constitutive models of rubber elasticity: a reriew[J].Rubber Chem Techn,2000,73(3): 504-523.
|
[5] |
Treloar L R G, Riding G. A nongaussian theory for rubber in biaxial strain—I: mechanical properties[J].Proc R Soc Lond Ser A,1979,369(1737): 261-280.
|
[6] |
Rivlin R S. Large elastic deformation of isotropic materials—Ⅰ,Ⅱ: fundamental concepts; some uniqueness theories for pure homogeneous deformations[J].Philos Trans Roy Soc Lond, Ser A,1948,240(822): 459-508.
|
[7] |
Tschoegl N W. Constitutive equations for elastomers[J].J Appl Polymer Sc, A1,1971,9(7): 1959-1970.
|
[8] |
James A G, Green A. Strain energy function of rubber—Ⅱ: the characterization of filled vulcanizates[J]. J Appl Polymer Sci,1975,19(8): 2319-2330.
|
[9] |
Morman Jr K N, Pan T Y. Application of finiteelement analysis in the design of automotive elastomeric components[J].Rubber Chemistry And Technology,1988,61(3): 503-533.
|
[10] |
Gent A N. A new constitutive relation for rubber[J].Rubber Chemistry and Technology,1996,〖STHZ〗 69(1): 59-61.
|
[11] |
Ogden R W. Large deformation isotropic elasticityon the correlation of theory and experiment for incompressible rubberlike materials[J].Proc Roy Soc London A,1972,326(1567): 565-584.
|
[12] |
Ogden R W.NonLinear Elastic Deformations [M]. Chichester: Ellis Horwood, 1984.
|
[13] |
李晓芳,杨晓翔.橡胶材料的超弹性本构模型[J]. 弹性体, 2005,15(1): 50-58. (LI Xiao-fang, YANG Xiao-xiang. A review of elastic constitutive model for rubber materials[J].China Elastomerics,2005,15(1): 50-58.(in Chinese))
|
[14] |
Xiao H. An explicit, direct approach to obtaining multi-axial elastic potentials which exactly match data of four benchmark tests for incompressible rubberlike materials—part 1: incompressible deformations[J].Acta Mechanica,2012,223(9): 2039-2063.
|
[15] |
Xiao H. An explicit, direct approach to obtain multi-axial elastic potentials which accurately match data of four benchmark tests for rubbery materials—part 2: general deformations[J].Acta Mechanica,2013,224(3):479-498.
|
[16] |
Rivlin R S, Saunders D W. Large elastic deformations of isotropic materials—VII: experiments on the deformation of rubber[J].Phil Trans R Soc Lond A,1951,243(865): 251-288.
|
[17] |
Xiao H. Hencky strain and Hencky model: extending history and ongoing tradition[J].Multidiscipline Modeling in Materials and Structures,2005,1(1):1-52.
|
[18] |
Xiao H, Bruhns O T, Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate[J].Acta Mechanica,1997,124(1/4): 89-105.
|
[19] |
Xiao H, Bruhns O T, Meyers A. Hypoelasticity model based upon the logarithmic stress rate[J].J Elasticity,1997,47(1): 51-68.
|
[20] |
Xiao H, Bruhns O T, Meyers A. The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate[J].Proc Roy Soc London A,2000,456(2000): 1865-1882.
|
[21] |
Xiao H, Bruhns O T, Meyers A. Basic issues concerning finite strain measures and isotropic stress-deformation relations[J]. J Elasticity,2002,67(1): 1-23.
|
[22] |
Xiao H, Bruhns O T, Meyers A. Explicit dual stressstrain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress[J]. Acta Mechanica,2004,168(1/2): 21-33.
|
[23] |
Xiao H, Chen L S. Hencky’s logarithmic strain measure and dual stressstrain and strainstress relations in isotropic finite hyperelasticity[J]. Int J Solids & Structures,2003,40(6): 1455-1463.
|