留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

wGF-封闭环上的弱Gorenstein平坦模

王修建 杜先能

王修建, 杜先能. 左wGF-封闭环上的弱Gorenstein平坦模[J]. 应用数学和力学, 2013, 34(5): 518-524. doi: 10.3879/j.issn.1000-0887.2013.05.010
引用本文: 王修建, 杜先能. 左wGF-封闭环上的弱Gorenstein平坦模[J]. 应用数学和力学, 2013, 34(5): 518-524. doi: 10.3879/j.issn.1000-0887.2013.05.010
WANG Xiu-jian, DU Xian-neng. Weak Gorenstein Flat Modules Under the Left wGF-Closed Rings[J]. Applied Mathematics and Mechanics, 2013, 34(5): 518-524. doi: 10.3879/j.issn.1000-0887.2013.05.010
Citation: WANG Xiu-jian, DU Xian-neng. Weak Gorenstein Flat Modules Under the Left wGF-Closed Rings[J]. Applied Mathematics and Mechanics, 2013, 34(5): 518-524. doi: 10.3879/j.issn.1000-0887.2013.05.010

wGF-封闭环上的弱Gorenstein平坦模

doi: 10.3879/j.issn.1000-0887.2013.05.010
基金项目: 国家自然科学基金资助项目(11126173)
详细信息
    作者简介:

    王修建(1982—), 男,安徽人,讲师,博士(通讯作者.E-mail: xjwang@wxc.edu.cn).

  • 中图分类号: O153.3

Weak Gorenstein Flat Modules Under the Left wGF-Closed Rings

  • 摘要: 利用同调代数的工具, 主要证明了弱Gorenstein平坦模类为投射预解的当且仅当它是扩张封闭的,进一步的刻画了左wGF-封闭环上弱Gorenstein平坦模的一些性质,这些内容丰富了D.Bennis等人的研究结果.
  • [1] Bennis D. Rings over which the class of Gorenstein flat modules is closed under extensions[J].Communications in Algebra,2009,37(3):855-868.
    [2] GAO Zeng-hui. Weak Gorenstein projective, injective and flat modules[J].J Algebra Appl,2013,12: 1250165. doi: 10.1142/S0219498812501654
    [3] Ding N Q, Li Y L, Mao L X. Strongly Gorenstein flat modules[J].Journal of the Australian Mathematical Society,2009,86(3): 323-338.
    [4] Christensen L W, Frankild A, Holm H. On Gorenstein projective, injective and flat dimensions—a functorial description with applications[J].Journal of Algebra,2006,302(1):231-279.
    [5] Bennis D, Mahdou N. Strongly Gorenstein projective, injective, and flat modules[J].Journal of Pure and Applied Algebra,2007,210(2): 437-445.
    [6] Holm H. Gorenstein homological dimension[J]. Journal of Pure and Applied Algebra,2004,189(1/3):167-193.
    [7] Holm H. Gorenstein projective, injective and flat modules[D]. MSc thesis. Institute for Mathematical Science, University of Copenhagen, 2004.
    [8] YANG Xiao-yan, LIU Zhong-kui.Strongly Gorenstein projective, injective and flat modules[J].Journal of Algebra,2008,320(7): 2659-2674.
    [9] Enochs E E, Jenda O M G,Torrecillas B. Gorenstein flat modules[J].Nanjing Daxue Xuebao Shuxue Bannian Kan,1993,10:1-9.
    [10] Hilton P J, Stammbach U.A Course in Homological Algebra [M] 2nd ed. SpringerVerlag, 1997.
    [11] Rotman J.An Introduction to Homological Algebra [M]. New York: Academic Press, 1979.
    [12] Enochs E E, LópezRamos J A. Kaplansky classes[J].Rend Semin Mat Univ Padova,2002,107: 67-79.
    [13] YANG Gang, LIU Zhongkui. Gorenstein flat covers over GF-closed rings[J].Communications in Algebra,2012,40(5):1632-1640.
    [14] Fieldhouse D J. Character modules, dimension and purity[J].Glasgow Mathematical Journal,1972,13(2): 144-146.
    [15] LIU Zhong-kui, YANG Xiao-yan. Gorenstein projective, injective and flat modules[J].Journal of the Australian Mathematical Society,2009,87(3):395-407.
    [16] DING Nan-qing, CHEN Jian-long. Coherent rings with finite self-FP-injective dimension[J].Communications in Algebra,1996,24(9):2963-2980.
  • 加载中
计量
  • 文章访问数:  1263
  • HTML全文浏览量:  100
  • PDF下载量:  1176
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-18
  • 修回日期:  2013-04-12
  • 刊出日期:  2013-05-15

目录

    /

    返回文章
    返回