留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

传递辛矩阵群收敛于辛Lie群

钟万勰 高强

钟万勰, 高强. 传递辛矩阵群收敛于辛Lie群[J]. 应用数学和力学, 2013, 34(6): 547-551. doi: 10.3879/j.issn.1000-0887.2013.06.001
引用本文: 钟万勰, 高强. 传递辛矩阵群收敛于辛Lie群[J]. 应用数学和力学, 2013, 34(6): 547-551. doi: 10.3879/j.issn.1000-0887.2013.06.001
ZHONG Wan-xie, GAO Qiang. Symplectic Group of the Transfer Matrix Converges to the Symplectic Lie Group[J]. Applied Mathematics and Mechanics, 2013, 34(6): 547-551. doi: 10.3879/j.issn.1000-0887.2013.06.001
Citation: ZHONG Wan-xie, GAO Qiang. Symplectic Group of the Transfer Matrix Converges to the Symplectic Lie Group[J]. Applied Mathematics and Mechanics, 2013, 34(6): 547-551. doi: 10.3879/j.issn.1000-0887.2013.06.001

传递辛矩阵群收敛于辛Lie群

doi: 10.3879/j.issn.1000-0887.2013.06.001
基金项目: 国家自然科学基金资助项目(11272076; 10721062)
详细信息
    作者简介:

    钟万勰(1934—),男,浙江人,教授,中科院院士(E-mail:zwoffice@dlut.edu.cn)

  • 中图分类号: O152.8

Symplectic Group of the Transfer Matrix Converges to the Symplectic Lie Group

  • 摘要: 通过作用量变分原理,给出了Hamilton正则方程离散积分的传递辛矩阵表示,利用Hamilton正则方程给出了其对应的Lie代数.说明了当时间区段长度趋近于0时,离散系统积分的传递辛矩阵群收敛于连续时间Hamilton系统微分方程分析积分得到的辛Lie群.
  • [1] Goldstein H.Classical Mechanics[M]. 3rd ed. London: AddisonWesley, 2002.
    [2] Arnold V I.Mathematical Methods of Classical Mechanics[M]. New York: SpringerVerlag, 1989.
    [3] 冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州:浙江科学技术出版社,2003. (FENG Kang, QIN Meng-zhao.Symplectic Geometric Algorithms for Hamiltonian Systems[M]. Hangzhou:Zhejiang Science & Technology Press, 2003.(in Chinese))
    [4] Hairer E, Lubich C, Wanner G.Geometric Numerical Integration: Structure-Preserving Algorithm for Ordinary Differential Equations[M]. New York: Springer, 2006.
    [5] Hairer E, Norsett S P, Wanner G.Solving Ordinary Differential Equations INonstiff Problem[M]. 2nd ed. Berlin: Springer, 1993.
    [6] Hairer E, Lubich C, Wanner G.Geometric Numerical Integration: Structure-Preserving Algorithm for Ordinary Differential Equations[M]. 2nd ed. New York: Springer, 2006.
    [7] 钟万勰.分析结构力学与有限元[J]. 动力学与控制学报, 2004, 2(4):18.(ZHONG Wan-xie. Analytical structural mechanics and finite element[J].Journal of Dynamics and Control, 2004, 2(4):18.(in Chinese))
    [8] 钟万勰, 姚征. 时间有限元与保辛[J]. 机械强度, 2005, 27(2):178183.(ZHONG Wan-xie, YAO Zheng. Time domain FEM and symplectic conservation[J].Journal of Mechanical Strength ,2005, 27(2):178183.(in Chinese))
    [9] 钟万勰, 高强.约束动力系统的分析结构力学积分[J]. 动力学与控制, 2006, 4(3):193200.(ZHONG Wan-xie, GAO Qiang. Integration of constrained dynamical system via analytical structural mechanics[J]. Journal of Dynamics and Control, 2006, 4(3):193200.(in Chinese))
    [10] 钟万勰, 高强.辛破茧[M].大连:大连理工大学出版社, 2011.(ZHONG Wan-xie, GAO Qiang.Break the Limitation of Symplecticity[M]. Dalian: Dalian University of Technology Press, 2011.(in Chinese))
    [11] 钟万勰. 力、功、能量与辛数学[M]. 大连:大连理工大学出版社, 2007.(ZHONG Wan-xie.Force, Work, Energy and Sympletic Mathematics[M]. Dalian: Dalian University of Technology Press, 2007.(in Chinese))
    [12] Gao Q, Tan S J, Zhang H W, Zhong W X. Symplectic algorithms based on the principle of least action and generating functions[J].International Journal for Numerical Methods in Engineering, 2012, 89(4): 438508.
  • 加载中
计量
  • 文章访问数:  1807
  • HTML全文浏览量:  122
  • PDF下载量:  1275
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-24
  • 修回日期:  2013-05-09
  • 刊出日期:  2013-06-15

目录

    /

    返回文章
    返回