留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动载下缝端应力强度因子计算的扩展有限元法

江守燕 杜成斌

江守燕, 杜成斌. 动载下缝端应力强度因子计算的扩展有限元法[J]. 应用数学和力学, 2013, 34(6): 586-597. doi: 10.3879/j.issn.1000-0887.2013.06.005
引用本文: 江守燕, 杜成斌. 动载下缝端应力强度因子计算的扩展有限元法[J]. 应用数学和力学, 2013, 34(6): 586-597. doi: 10.3879/j.issn.1000-0887.2013.06.005
JIANG Shou-yan, DU Cheng-bin. Evaluation on Stress Intensity Factors at the Crack Tip Under Dynamic Loads Using Extended Finite Element Methods[J]. Applied Mathematics and Mechanics, 2013, 34(6): 586-597. doi: 10.3879/j.issn.1000-0887.2013.06.005
Citation: JIANG Shou-yan, DU Cheng-bin. Evaluation on Stress Intensity Factors at the Crack Tip Under Dynamic Loads Using Extended Finite Element Methods[J]. Applied Mathematics and Mechanics, 2013, 34(6): 586-597. doi: 10.3879/j.issn.1000-0887.2013.06.005

动载下缝端应力强度因子计算的扩展有限元法

doi: 10.3879/j.issn.1000-0887.2013.06.005
基金项目: 国家自然科学基金资助项目(11132003);中国博士后科学基金资助项目(2013M530233)
详细信息
    作者简介:

    江守燕(1986—),女,安徽舒城人,博士,博士后(E-mail: syjiang@hhu.edu.cn);杜成斌(1965—),男,江苏盐城人,教授(通讯作者.E-mail: cbdu@hhu.edu.cn).

  • 中图分类号: TB115;O346.1

Evaluation on Stress Intensity Factors at the Crack Tip Under Dynamic Loads Using Extended Finite Element Methods

  • 摘要: 在扩展有限元法(extended finite element methods, XFEM)的理论框架下,重点研究了动荷载作用下稳定裂纹尖端动态应力强度因子(dynamic stress intensity factors, DSIFs)的求解方法.根据XFEM的位移模式,推导了动力XFEM的支配方程,采用Newmark隐式算法进行时间积分同时,提出一种XFEM质量矩阵的集中策略,给出了求解DSIFs的相互作用积分方法,与静态问题的相互作用积分方法相比,增加了惯性项的贡献.最后,若干典型算例的计算结果表明:XFEM可以准确评价稳定裂纹尖端的DSIFs,建议的质量矩阵集中策略是有效的,为得到正确的DSIFs,惯性项的贡献不可忽略.
  • [1] 章青, 刘宽, 夏晓舟, 杨静. 广义扩展有限元法及其在裂纹扩展分析中的应用[J]. 计算力学学报, 2012,29(3): 427-432. (ZHANG Qing, LIU Kuan, XIA Xiao-Zhou, YANG Jing. Generalized extended finite element method and its application in crack growth analysis[J].Chinese Journal of Computational Mechanics,2012,29(3): 427-432. (in Chinese))
    [2] 余天堂, 万林林. 非均质材料热传导问题的扩展有限元法[J]. 计算力学学报, 2011,28(6): 884-890. (YU Tian-tang, WAN Lin-lin. Extended finite element method for heat transfer problems in heterogeneous material[J].Chinese Journal of Computational Mechanics,2011,28(6): 884-890. (in Chinese))
    [3] Belytschko T, Chen H, Xu J,Zi G. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment[J].International Journal for Numerical Methods in Engineering,2003,58(12): 1873-1905.
    [4] Chen H.Enriched finite element methods and their applications[D]. Evanston, Illinois: Northwestern University, 2003.
    [5] Réthoré J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the extended finite element method[J]. International Journal for Numerical Methods in Engineering,2005,63(5): 631-659.
    [6] Réthoré J, Gravouil A, Combescure A. A combined space-time extended finite element method[J]. International Journal for Numerical Methods in Engineering,2005,64(2): 260-284.
    [7] Menouillard T, Belytschko T. Dynamic fracture with meshfree enriched XFEM[J].Acta Mechanica,2010,213(1/2): 53-69.
    [8] Menouillard T, Belytschko T. Smoothed nodal forces for improved dynamic crack propagation modeling in XFEM[J].International Journal for Numerical Methods in Engineering,2010,84(1): 47-72.
    [9] Menouillard T, Song J H, Duan Q L,Belytschko T. Time dependent crack tip enrichment for dynamic crack propagation[J].International Journal of Fracture,2010,162(1/2): 33-49.
    [10] Menouillard T, Réthoré J, Combescure A,Bung H. Efficient explicit time stepping for the extended finite element method (X-FEM)[J]. International Journal for Numerical Methods in Engineering,2006,68(9): 911-939.
    [11] Menouillard T, Réthoré J, Mos N,Combescure A, Bung H. Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation[J].International Journal for Numerical Methods in Engineering,2008,74(3): 447-474.
    [12] Liu Z L, Menouillard T, Belytschko T. An XFEM/Spectral element method for dynamic crack propagation[J]. International Journal of Fracture,2011,169(2): 183-198.
    [13] Motamedi D, Mohammadi S. Dynamic analysis of fixed cracks in composites by the extended finite element method[J]. Engineering Fracture Mechanics,2010,77(17): 3373-3393.
    [14] 方修君, 金峰, 王进廷. 基于扩展有限元法的Koyna重力坝地震开裂过程模拟[J]. 清华大学学报(自然科学版), 2008,48(12): 2065-2069. (FANG Xiu-jun, JIN Feng, WANG Jin-ting. Seismic fracture simulation of the Koyna gravity dam using an extended finite element method[J].Journal of Tsinghua University (Science and Technology),2008,48(12): 2065-2069. (in Chinese))
    [15] 王志勇, 马力, 吴林志, 于红军. 基于扩展有限元法的颗粒增强复合材料静态及动态断裂行为研究[J]. 固体力学学报, 2011,32(6): 566-573. (WANG Zhi-yong, MA Li, WU Lin-zhi, YU Hong-jun. Investigation of static and dynamic fracture behavior of particlereinforced composite materials by the extended finite element method[J].Chinese Journal of Solid Mechanics,2011,32(6): 566-573. (in Chinese))
    [16] 庄茁, 柳占立, 成斌斌, 廖剑晖. 扩展有限单元法[M]. 北京: 清华大学出版社, 2012. (ZHUANG Zhuo, LIU Zhan-li, CHENG Bin-bin, LIAN Jian-hui.Extended Finite Element Method [M]. Beijing: Tsinghua University Press, 2012. (in Chinese))
    [17] Zhuang Z, Cheng B B. Development of X-FEM methodology and study on mixed-mode crack propagation[J]. Acta Mechanica Sinica,2011,27(3): 406-415.
    [18] 范天佑. 断裂动力学原理与应用[M]. 北京: 北京理工大学出版社, 2006: 10-12. (FANG Tian-you.Fracture Dynamics: Principle and Application [M]. Beijing: Beijing Institute of Technology Press, 2006: 10-12. (in Chinese))
    [19] Mohammadi S.Extended Finite Element Method[M]. Blackwell Publishing Ltd, 2008.
    [20] Song S H, Paulino G H. Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method[J].International Journal of Solids and Structures,2006,43(16): 4830-4866.
    [21] Freund L B. Dynamic Fracture Mechanics[M]. Cambridge Monographs on Mechanics and Applied Mathematics, 1990.
    [22] Chen Y M. Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code)[J].Engineering Fracture Mechanics,1975,7(4): 653-660.
  • 加载中
计量
  • 文章访问数:  2108
  • HTML全文浏览量:  154
  • PDF下载量:  1634
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-11
  • 修回日期:  2013-05-16
  • 刊出日期:  2013-06-15

目录

    /

    返回文章
    返回