留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于裂纹尖端二阶弹性解的断裂过程区尺度

段树金 张彦龙 安蕊梅

段树金, 张彦龙, 安蕊梅. 基于裂纹尖端二阶弹性解的断裂过程区尺度[J]. 应用数学和力学, 2013, 34(6): 598-605. doi: 10.3879/j.issn.1000-0887.2013.06.006
引用本文: 段树金, 张彦龙, 安蕊梅. 基于裂纹尖端二阶弹性解的断裂过程区尺度[J]. 应用数学和力学, 2013, 34(6): 598-605. doi: 10.3879/j.issn.1000-0887.2013.06.006
DUAN Shu-jin, ZHANG Yan-long, AN Rui-mei. Fracture Process Zone Size Based on Secondary Elastic Crack Tip Stress Solution[J]. Applied Mathematics and Mechanics, 2013, 34(6): 598-605. doi: 10.3879/j.issn.1000-0887.2013.06.006
Citation: DUAN Shu-jin, ZHANG Yan-long, AN Rui-mei. Fracture Process Zone Size Based on Secondary Elastic Crack Tip Stress Solution[J]. Applied Mathematics and Mechanics, 2013, 34(6): 598-605. doi: 10.3879/j.issn.1000-0887.2013.06.006

基于裂纹尖端二阶弹性解的断裂过程区尺度

doi: 10.3879/j.issn.1000-0887.2013.06.006
基金项目: 河北省高等学校科学技术研究重点项目(ZH2012040)
详细信息
    作者简介:

    段树金(1955—),男,河北人,教授,博士,博士生导师(通讯作者. Tel: +86-311-87935546; E-mail: duanshujin@stdu.edu.cn)

  • 中图分类号: TU528.1;O346.1

Fracture Process Zone Size Based on Secondary Elastic Crack Tip Stress Solution

  • 摘要: 基于Westergaard应力函数裂纹尖端二阶弹性解,推导了裂纹尖端微裂区的轮廓线和特征尺寸的解析表达式;采用幂函数模型描述的拉应变软化模型,确定了在最大拉应力强度理论和最大拉应变强度理论下断裂过程区(FPZ)临界值的解析表达式;将基于Westergaard应力函数一阶弹性解及二阶弹性解、Muskhelishvili应力函数和Duan-Nakagawa模型确定的FPZ临界值进行了比较.结果表明裂纹尖端微裂区和FPZ临界值随着Poisson比的减小而增加并逐渐趋近于应用最大拉应力强度理论确定的结果;二阶弹性解确定的裂纹尖端微裂区和FPZ临界值大于一阶弹性解的值;FPZ临界值随着拉应变软化指数的增加而增加;二阶弹性解确定的FPZ临界值的精度远高于一阶弹性解确定的值.
  • [1] Kaplan M F.Crack propagation and the fracture of concrete[J]. Journal of ACI,1961,58(11):591-610.
    [2] Ohtsu M, Kaminaga Y, Munwam M C. Experimental and numerical crack analysis of mixedmode failure in concrete by acoustic emission and boundary element method[J]. Construction and Building Materials,1999,13(1): 57-64.
    [3] Landis E N. Micro-macro fracture relationship and acoustic emission in concrete[J]. Construction and Building Materials,1999,13(2): 65-72.
    [4] 吴智敏, 赵国藩. 光弹贴片法研究混凝土在疲劳荷载作用下裂缝扩展过程[J]. 实验力学, 2000,15(3): 286-292. (WU Zhi-min, ZHAO Guo-fan. An investigation on crack propagation process in concrete under fatigue loading by means of photoelastic coating[J].Journal of Experimental Mechanics,2000,15(3): 286-292. (in Chinese))
    [5] Hillerborg A. Analysis of fracture by means of the fictitious crack model, particularly for fiberreinforced concrete[J].Int J Cement Compos,1980,2(4):177-188.
    [6] Bazant Z P, Pang S D, Vorechovsky M. Energeticstatistical size influence simulated by SFEM with stratified sampling and crack band model[J]. International Journal for Numerical Methods in Engineering,2007,71(2): 1297-1320.
    [7] Duan S J, Nakagawa K.Stress functions with finite stress concentration at the crack tips for central cracked panel[J].Engng Fracture Mech,1988,29(5):517-526.
    [8] Zhu M, Chang W V. An unsymmetrical fracture process zone model and its application to the problem of radical crack with an inclusion in longitudinal shear deformation[C]// Proceedings of FRAMCOS3/Fracture Mechanics of Concrete Structures . Freiburg, Germany, 1997:1097-1106.
    [9] 胡若邻,黄培彦,郑顺朝.混凝土断裂过程区尺寸的理论推导[J]. 工程力学,2010,27(6): 127-132. (HU Ruo-lin, HUANG Pei-yan, ZHENG Shun-zhao. Theoretical derivation of the size of fracture process zone of concrete[J].Engineering Mechanics,2010,27(6):127-132. (in Chinese))
    [10] Tada H, Paris P C. Secondary elastic crack tip stress which may influence very slow fatigue crack growth—additional results[J].International Journal of Fatigue,2005,27(10/12):1307-1313.
    [11] Dugdale D S. Yielding of steel sheet containing slits[J]. Journal of the Mechanics Physics of Solids,1960,8(2):100-104.
  • 加载中
计量
  • 文章访问数:  1843
  • HTML全文浏览量:  167
  • PDF下载量:  1060
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-22
  • 修回日期:  2013-04-28
  • 刊出日期:  2013-06-15

目录

    /

    返回文章
    返回