留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于曲率插值的大变形梁单元

张志刚 齐朝晖 吴志刚

张志刚, 齐朝晖, 吴志刚. 基于曲率插值的大变形梁单元[J]. 应用数学和力学, 2013, 34(6): 620-629. doi: 10.3879/j.issn.1000-0887.2013.06.008
引用本文: 张志刚, 齐朝晖, 吴志刚. 基于曲率插值的大变形梁单元[J]. 应用数学和力学, 2013, 34(6): 620-629. doi: 10.3879/j.issn.1000-0887.2013.06.008
ZHANG Zhi-gang, QI Zhao-hui, WU Zhi-gang. Large Deformation Beam Element Based on Curvature Interpolation[J]. Applied Mathematics and Mechanics, 2013, 34(6): 620-629. doi: 10.3879/j.issn.1000-0887.2013.06.008
Citation: ZHANG Zhi-gang, QI Zhao-hui, WU Zhi-gang. Large Deformation Beam Element Based on Curvature Interpolation[J]. Applied Mathematics and Mechanics, 2013, 34(6): 620-629. doi: 10.3879/j.issn.1000-0887.2013.06.008

基于曲率插值的大变形梁单元

doi: 10.3879/j.issn.1000-0887.2013.06.008
基金项目: 国家自然科学基金资助项目(10972044)
详细信息
    作者简介:

    张志刚(1984—),男,河南开封人,博士生(E-mail:zhigangzhang@foxmail.com)

  • 中图分类号: O342

Large Deformation Beam Element Based on Curvature Interpolation

  • 摘要: 线性梁单元的形函数在单元大转动时会引起虚假应变,不适用于几何非线性分析.传统的几何非线性梁单元由于位移插值和转角插值的相干性,常常引起剪切闭锁等问题.该文 提出了一种平面大变形梁单元,通过单元域内的曲率插值以及曲率与节点位移之间的函数关系,将单元节点力和节点位移表示为节点曲率的函数.由于曲率插值本质上是对梁的应变进行插值,保证了单元任意刚体运动不会产生虚假的节点力;且将梁的截面形心位移表示为曲率的函数,避免了传统单元中的剪切闭锁问题.因而所提方法特别适用于梁的几何非线性分析.数值算例说明了所提方法的正确性和有效性.
  • [1] Xiao N, Zhong H. Nonlinear quadrature element analysis of planar frames based on geometrically exact beam theory[J].International Journal of NonLinear Mechanics,2012, 47(5): 481-488.
    [2] 王世来, 凌道盛. 适用于大变形分析的平面协调梁单元[J]. 浙江大学学报 (工学版), 2007, 41(5): 818822. (WANG Shi-lai, LING Dao-sheng. Fully conforming plane beam element for large deformation analysis[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(5):818-822. (in Chinese))
    [3] Felippa C A, Haugen B. A unified formulation of smallstrain corotational finite elements—Ⅰ: theory[J].Computer Methods in Applied Mechanics and Engineering,2005, 194(21): 2285-2335.
    [4] 吕和祥, 朱菊芬. 大转动梁的几何非线性分析讨论[J]. 计算结构力学及其应用, 1995, 12(4): 485490. (Lū He-xiang, ZHU Ju-fen. Discussion of analyzing of geometric nonlinear beams with large rotations[J].Computational Structural Mechanics and Applications,1995, 12(4):485-490. (in Chinese))
    [5] 蔡松柏, 沈蒲生. 大转动平面梁有限元分析的共旋坐标法[J]. 工程力学, 2006, 23(s1): 76-80. (CAI Song-bai, SHEN Pu-sheng. Co-rotational procedure for finite element analysis of plane beam under large rotational displacement[J].Engineering Mechanics,2006, 23(s1):76-80. (in Chinese))
    [6] Li Z X. A co-rotational formulation for 3D beam element using vectorial rotational variables[J]. Computational Mechanics,2007, 39(3): 309-322.
    [7] Hsiao K M, Lin J Y, Lin W Y. A consistent corotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams[J].Computer Methods in Applied Mechanics and Engineering,1999, 169(1): 1-18.
    [8] 罗晓明,齐朝晖,许永生,韩雅楠. 含有整体刚体位移杆件系统的几何非线性分析[J]. 工程力学, 2011, 28(2): 62-68. (LUO Xiao-ming, QI Zhao-hui, XU Yong-sheng, HAN Ya-nan. Geometric nonlinear analysis of truss systems with rigid body motions[J]. Engineering Mechanics,2011, 28(2):62-68 (in Chinese))
    [9] Haefner L, Willam K J. Large deflection formulations of a simple beam element including shear deformations[J]. Engineering Computations,1984, 1(4): 359-368.
    [10] Reissner E. On one-dimensional finitestrain beam theory: the plane problem[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP,1972, 23(5): 795-804.
    [11] Simo J C, VuQuoc L. A threedimensional finitestrain rod model—Part Ⅱ: computational aspects[J]. Computer Methods in Applied Mechanics and Engineering, 1986, 58(1): 79-116.
    [12] Mattiasson K. Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals[J].International Journal for Numerical Methods in Engineering, 1981, 17(1): 145-153.
    [13] Nanakorn P, Vu L N. A 2D field-consistent beam element for large displacement analysis using the total Lagrangian formulation[J]. Finite Elements in Analysis and Design,2006, 42(14): 1240-1247.
  • 加载中
计量
  • 文章访问数:  1965
  • HTML全文浏览量:  169
  • PDF下载量:  1382
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-07
  • 修回日期:  2013-05-20
  • 刊出日期:  2013-06-15

目录

    /

    返回文章
    返回