留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

向量优化问题有效点集的稳定性

赵勇 彭再云 张石生

赵勇, 彭再云, 张石生. 向量优化问题有效点集的稳定性[J]. 应用数学和力学, 2013, 34(6): 643-650. doi: 10.3879/j.issn.1000-0887.2013.06.010
引用本文: 赵勇, 彭再云, 张石生. 向量优化问题有效点集的稳定性[J]. 应用数学和力学, 2013, 34(6): 643-650. doi: 10.3879/j.issn.1000-0887.2013.06.010
ZHAO Yong, PENG Zai-yun, ZHANG Shi-sheng. Stability of the Sets of Efficient Points of Vector-Valued Optimization Problems[J]. Applied Mathematics and Mechanics, 2013, 34(6): 643-650. doi: 10.3879/j.issn.1000-0887.2013.06.010
Citation: ZHAO Yong, PENG Zai-yun, ZHANG Shi-sheng. Stability of the Sets of Efficient Points of Vector-Valued Optimization Problems[J]. Applied Mathematics and Mechanics, 2013, 34(6): 643-650. doi: 10.3879/j.issn.1000-0887.2013.06.010

向量优化问题有效点集的稳定性

doi: 10.3879/j.issn.1000-0887.2013.06.010
基金项目: 国家自然科学基金资助项目(11271389; 11201509; 71271226);重庆市自然科学基金资助项目(CSTC,2012jjA00016; 2011AC6104; 2011BA0030);重庆市教委项目(130428)
详细信息
    作者简介:

    赵勇(1989—),男,重庆人,硕士生(E-mail: zhaoyongty@126.com);

  • 中图分类号: O224

Stability of the Sets of Efficient Points of Vector-Valued Optimization Problems

  • 摘要: 在不需要紧性假设下,利用拟C-凸函数及回收锥的性质,建立了向量优化问题有效点集的稳定性, 获得了一列目标函数和可行集均扰动情形下的向量优化问题与对应的向量优化问题有效点集的PainlevéKuratowski内收敛性结果.所得结果推广和改进了相关文献(Attouch H, Riahi H. Stability results for Ekeland’s ε-variational principle and cone extremal solution; Huang X X. Stability in vector-valued and set-valued optimization)中的相应结果, 并给出例子说明了所得结果的正确性.
  • [1] Sawaragi Y, Nakayama H, Tanino T. Theory of Multiobjective Optimization [M]. Mathematics in Science and Engineering. 176. London: Academic Press, 1985.
    [2] Luc D T. Theory of Vector Optimization [M]. Lecture Notes in Economics and Mathematical Systems. 319. Berlin: Springer, 1989.
    [3] Naccache P H. Stability in multicriteria optimization[J]. Journal of Mathematical Analysis and Applications,1979, 68(2): 441-453.
    [4] Tanino T. Stability and sensitivity analysis in convex vector optimization[J]. SIAM Journal on Control and Optimization,1988, 26(3): 521-536.
    [5] Tanino T. Stability and sensitivity analysis in multiobjective nonlinear programming[J]. Annals of Operations Research,1990, 27(1): 97-114.
    [6] Attouch H, Riahi H. Stability results for Ekeland’s ε-variational principle and cone extremal solution[J]. Mathematics of Operations Research,1993, 18(1): 173-201.
    [7] Chen G Y, Huang X X. Stability results for Ekeland’s ε-variational principle for vector valued functions[J]. Mathematical Methods of Operations Research,1998, 48(1): 97-103.
    [8] Huang X X. Stability in vector-valued and set-valued optimization[J]. Mathematical Methods of Operations Research,2000, 52(2): 185-193.
    [9] Lucchetti R E, Miglierina E. Stability for convex vector optimization problems[J]. Optimization,2004, 53(5/6): 517-528.
    [10] Oppezzi P, Rossi A M. A convergence for vector valued functions[J]. Optimization,2008, 57(3): 435-448.
    [11] Oppezzi P, Rossi A M. A convergence for infinite dimensional vector valued functions[J]. Joural of Global Optimization,2008, 42(4): 577-586.
    [12] Crespi G P, Papalia M, Rocca M. Extended wellposedness of quasiconvex vector optimization problems[J]. Journal of Optimization Theory and Applications,2009, 141(2): 285-297.
    [13] Crespi G P, Guerraggio A, Rocca M. Wellposedness in vector optimization problems and vector variational inequalities[J]. Journal of Optimization Theory and Applications,2007, 132(1): 213-226.
    [14] Lalitha C S, Chatterjee P. Wellposedness and stability in vector optimization problems using Henig proper efficiency[J]. Optimization,2013, 62(1): 155-165.
    [15] Zeng J, Li S J, Zhang W Y, Xue X W. Stability results for convex vectorvalued optimization problems[J]. Positivity,2011, 15(3): 441-453.
    [16] Peng Z Y, Yang X M. Semicontinuity of the solution mappings to weak generalized parametric Ky Fan inequality problems with trifunctions[J]. Optimization,2012, doi: 10.1080/02331934.2012.660693.
    [17] Lalitha C S, Chatterjee P. Stability for properly quasiconvex vector optimization problem[J]. Journal of Optimization Theory and Applications,2012, 155(2): 492-506.
    [18] Lalitha C S, Chatterjee P. Stability and scalarization of weak efficient, efficient and Henig proper efficient sets using generalized quasiconvexities[J]. Journal of Optimization Theory and Applications,2012, 155(3): 941-961.
  • 加载中
计量
  • 文章访问数:  2202
  • HTML全文浏览量:  176
  • PDF下载量:  1128
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-27
  • 修回日期:  2013-05-31
  • 刊出日期:  2013-06-15

目录

    /

    返回文章
    返回