留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意厚度具有自由边叠层板的精确解析解

王德才 关群 范家让

王德才, 关群, 范家让. 任意厚度具有自由边叠层板的精确解析解[J]. 应用数学和力学, 2013, 34(7): 672-686. doi: 10.3879/j.issn.1000-0887.2013.07.002
引用本文: 王德才, 关群, 范家让. 任意厚度具有自由边叠层板的精确解析解[J]. 应用数学和力学, 2013, 34(7): 672-686. doi: 10.3879/j.issn.1000-0887.2013.07.002
WANG De-cai, GUAN Qun, FAN Jia-rang. Exact Analytic Solution for Laminated Plates With Free-Edges and Arbitrary Thickness[J]. Applied Mathematics and Mechanics, 2013, 34(7): 672-686. doi: 10.3879/j.issn.1000-0887.2013.07.002
Citation: WANG De-cai, GUAN Qun, FAN Jia-rang. Exact Analytic Solution for Laminated Plates With Free-Edges and Arbitrary Thickness[J]. Applied Mathematics and Mechanics, 2013, 34(7): 672-686. doi: 10.3879/j.issn.1000-0887.2013.07.002

任意厚度具有自由边叠层板的精确解析解

doi: 10.3879/j.issn.1000-0887.2013.07.002
基金项目: 国家自然科学基金资助项目(51278519)
详细信息
    作者简介:

    王德才(1982—),男,安徽肥东人,博士(通讯作者. E-mail: wdecai@ustc.edu.cn)

  • 中图分类号: O343

Exact Analytic Solution for Laminated Plates With Free-Edges and Arbitrary Thickness

  • 摘要: 自由边问题一直是三维弹性力学中的难题,通常很难满足自由边上一个正应力和两个剪应力都等于0.基于三维弹性力学基本方程和状态空间方法,引入自由边界位移函数并考虑全部弹性常数,建立了正交异性具有自由边单层和叠层板的状态方程.对状态方程中的变量以级数形式展开,通过边界条件的满足精确求解任意厚度具有自由边叠层板的位移和应力,此解满足层间应力和位移的连续条件.算例计算表明,采用引入的位移函数形式,简化了计算过程并且采用较少的级数项可以获得收敛解.与有限元方法计算结果进行了对比,可以得到较高精度的数值结果.其解可以作为其它数值方法和半解析方法的参考解.
  • [1] Xu Z L.Applied Elasticity [M]. New Delhi: Wiley Eastern Limited, 1992.
    [2] Reissner E. Note on the effect of transverse shear deformation in laminated anisotropic plates[J].Comput Method Appl M,1979, 20(2): 203-209.
    [3] Reddy J N. A simple higherorder theory for laminated composite plate[J].Journal of Applied Mechanics,1984, 51(4): 745-752.
    [4] Noor A K. Mixed finite-difference scheme for analysis of simply supported thick plates[J].Comput Struct,1973, 3(5): 967-982.
    [5] Spencer A J M, Watson P. Buckling of laminated anisotropic plates under cylindrical bending[J].J Mech Phys Solids,1992, 40(7): 1621-1635.
    [6] 钟万勰. 弹性力学求解新体系[M]. 大连:大连理工大学出版社, 1995.(ZHONG Wan-xie.A New Systematic Methodology for Theory of Elasticity [M]. Dalian: Dalian University of Technology Press, 1995.(in Chinese))
    [7] FAN Jia-rang, YE Jian-qiao. An exact solution for the statics and dynamics of laminated thick plates with orthotropic layers[J].Int J Solids Struct,1990, 26(5/6): 655-662.
    [8] FAN Jia-rang, YE Jian-qiao. Exact solutions of buckling for simply supported thick laminates[J].Compos Struct,1993, 24(1): 23-28.
    [9] FAN Jia-rang, ZHANG Ju-yong. Analytical solutions for thick, doubly curved, laminated shells[J].J Eng Mech,1992, 118(7): 1338-1356.
    [10] FAN Jia-rang, ZHANG Ju-yong. Exact solutions for thick laminated shells[J].Science in China, Ser A ,1992, 35(11): 1343-1355.
    [11] 范家让, 盛宏玉. 具有固支边的强厚度叠层板的精确解[J]. 力学学报, 1992, 24(5): 574-583.(FAN Jia-rang, SHENG Hong-yu. Exact solution for thick laminate with clamped edges[J].Acta Mechanica Sinica,1992, 24(5): 574-583.(in Chinese))
    [12] 范家让. 强厚度叠层板壳的精确理论[M]. 北京:科学出版社, 1998.(FAN Jia-rang.Exact Theory of Thick Laminated Plates and Shells [M]. Beijing: Science Press, 1998.(in Chinese))
    [13] 丁皓江, 陈伟球, 徐荣桥. 横观各向同性层合矩形板弯曲、振动和稳定的三维情况分析[J]. 应用数学和力学, 2001, 22(1): 16-22.(DING Hao-jiang, CHEN Wei-qiu, XU Rong-qiao. On the bending, vibration and stability of laminated rectangular plates with transversely isotropic layers[J].Applied Mathematics and Mechanics,2001, 22(1):16-22.(in Chinese))
    [14] Lee J S, Jiang L Z. Exact electroelastic analysis of piezoelectric lamina via state space approach[J].Int J Solids Struct,1996, 33(7): 977-990.
    [15] Lu C F, Chen W Q, Shao J W. Semianalytical threedimensional elasticity solutions for generally laminated composite plates[J].European Journal of MechanicsA/Solids,2008, 27(5): 899-917.
    [16] Attallah K M Z, Ye J Q, Sheng H Y. Three-dimensional finite strip analysis of laminated panels[J].Comput Struct,2007, 85(23/24):1769-1781.
  • 加载中
计量
  • 文章访问数:  1965
  • HTML全文浏览量:  172
  • PDF下载量:  1070
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-02
  • 修回日期:  2013-05-25
  • 刊出日期:  2013-07-15

目录

    /

    返回文章
    返回