留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解流固耦合问题的一种四步分裂有限元算法

王华坤 洪国军 杨闻宇 喻国良

王华坤, 洪国军, 杨闻宇, 喻国良. 求解流固耦合问题的一种四步分裂有限元算法[J]. 应用数学和力学, 2013, 34(7): 704-713. doi: 10.3879/j.issn.1000-0887.2013.07.005
引用本文: 王华坤, 洪国军, 杨闻宇, 喻国良. 求解流固耦合问题的一种四步分裂有限元算法[J]. 应用数学和力学, 2013, 34(7): 704-713. doi: 10.3879/j.issn.1000-0887.2013.07.005
WANG Hua-kun, HONG Guo-jun, YANG Wen-yu, YU Guo-liang. A Four-Step Fractional Finite Element Method for Fluid-Structure Interaction[J]. Applied Mathematics and Mechanics, 2013, 34(7): 704-713. doi: 10.3879/j.issn.1000-0887.2013.07.005
Citation: WANG Hua-kun, HONG Guo-jun, YANG Wen-yu, YU Guo-liang. A Four-Step Fractional Finite Element Method for Fluid-Structure Interaction[J]. Applied Mathematics and Mechanics, 2013, 34(7): 704-713. doi: 10.3879/j.issn.1000-0887.2013.07.005

求解流固耦合问题的一种四步分裂有限元算法

doi: 10.3879/j.issn.1000-0887.2013.07.005
基金项目: 国家高技术研究发展计划项目( 2007AA09Z312)
详细信息
    作者简介:

    王华坤(1985—),男,河北人,博士生 (E-mail: hkwang@sjtu.edu.cn);喻国良(1963—),男,教授,博士生导师 (通讯作者. E-mail:yugl@sjtu.edu.cn).

  • 中图分类号: O357.1

A Four-Step Fractional Finite Element Method for Fluid-Structure Interaction

  • 摘要: 基于arbitrary Lagrangian Eulerian (ALE) 有限元方法,发展了一种求解流固耦合问题的弱耦合算法.将半隐式四步分裂有限元格式推广至求解ALE描述下的Navier-Stokes(N-S)方程,并在动量方程中引入迎风流线(streamline upwind/Petrov-Galerkin, SUPG)稳定项以消除对流引发的速度场数值振荡;采用Newmark-β法对结构方程进行时间离散;运用经典的Galerkin有限元法求解修正的Laplace方程以实现网格更新,每个计算步施加网格总变形量防止结构长时间、大位移运动时的网格质量恶化.运用上述算法对弹性支撑刚性圆柱体的流致振动问题进行了数值模拟,计算结果与已有结果相吻合,初步验证了该算法的正确性和有效性.
  • [1] Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces—the deformingspatialdomain/space-time procedure—I: the concept and the preliminary numerical tests[J]. Computer Methods in Applied Mechanics and Engineering,1992, 94(3): 339-351.
    [2] Hughes T J R, Franca L P, Balestra M. A new finite element formulation for computational fluid dynamics—V: circumventing the Babu-ka-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations[J]. Computer Methods in Applied Mechanics and Engineering,1986, 59(1): 85-99.
    [3] Onate E. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation[J]. Computer Methods in Applied Mechanics and Engineering,2000, 182(3/4): 355-370.
    [4] Chorin A J. Numerical solutions of the NavierStokes equations[J]. Mathematics of Computation,1968, 22(104): 745-762.
    [5] Donea J, Giuliani S, Laval H. Finite element solution of the unsteady NavierStokes equations by a fractional step method[J]. Computer Methods in Applied Mechanics and Engineering,1982, 30(1): 53-73.
    [6] Choi H G, Choi H, Yoo J Y. A fractional fourstep element formulation of the unsteady incompressible Navier-Stokes equations using SUPG and linear equal-order element methods[J]. Computer Methods in Applied Mechanics and Engineering,1997, 143(3/4): 333-348.
    [7] Choi H G. Splitting method for the combined formulation of the fluid-particle problem[J]. Computer Methods in Applied Mechanics and Engineering,2000, 190(11/12): 1367-1368.
    [8] Brooks A N, Hughes T J R. Streamline upwind/PetrovGalerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering,1982, 32(1/3): 199-259.
    [9] Masud A, Bhanabhagvanwala M, Khurram R A. An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction[J]. Computers and Fluids,2007, 36(1): 77-91.
    [10] Persillon H, Braza M. Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional NavierStokes simulation[J]. Journal of Fluid Mechanics,1998, 365: 23-88.
    [11] Ahn H T, Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes[J].Journal of Computational Physics,2006, 219(2): 671-696.
    [12] Borazjani I, Sotiropoulos F. Vortex-induced vibrations of two cylinders in tandem arrangement in proximity-wake-interference region[J]. Journal of Fluid Mechanics,2009, 621: 321-364.
    [13] Prasanth T K, Mittal S. Vortexinduced vibrations of a circular cylinder at low Reynolds numbers[J]. Journal of Fluid Mechanics,2008, 594: 463-491.
    [14] Zhou C Y, So R M C, Lam K. Vortexinduced vibrations of an elastic circular cylinder[J]. Journal of Fluids and Structures,1999, 13(2): 165-189.
    [15] Newmann D J, Karniadaki G E. Direct numerical simulations of flow over a flexible cable[C]//Bearman P W ed. Flow-Induced Vibration. Rotterdam: Balkema, 1995: 193-203.
  • 加载中
计量
  • 文章访问数:  1639
  • HTML全文浏览量:  184
  • PDF下载量:  1346
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-27
  • 修回日期:  2013-05-28
  • 刊出日期:  2013-07-15

目录

    /

    返回文章
    返回