[1] |
Brailove A A, Linsay P S, Koster G. An experimental study of a population of relaxation oscillators with a phase-repelling mean-field coupling[J]. International Journal of Bifurcation Chaos,1996, 6(2): 1211-1253.
|
[2] |
Ramana Reddy D V, Sen A, Johnston G L. Experimental evidence of time delay induced death in coupled limit cycle oscillators[J].Physical Review Letters,2000, 85(16): 3381-3384.
|
[3] |
Satoh K. Computer experiments on the co-operative behavior of a network of interacting nonlinear oscillators[J].Journal of Physical Society of Japan,1989, 58: 2010-2021.
|
[4] |
Hadley P, Beasley M R, Wiesenfeld K. Phase locking of Josephson-junction series arrays[J].Physical Review B,1988, 38(13): 8712-8719.
|
[5] |
Nakajima K, Sawada Y. Experimental studies on the weak coupling of oscillatory chemical reaction systems[J].Journal of Chemical Physics,1980, 72(4): 2231-2234.
|
[6] |
Bar-Eli K. On the stability of coupled chemical oscillators[J].Physica D,1985, 14(2): 242-252.
|
[7] |
Shiino M, Frankowicz M. Synchronization of infinitely many coupled limit-cycle oscillators[J].Physical Letter A,1989, 136(3): 103-108.
|
[8] |
Aronson D G, Ermentrout G B, Koppel N. Amplitude response of coupled oscillators[J].Physica D,1990, 41(3): 403-449.
|
[9] |
Mirollo R E, Strogatz S H. Amplitudes death in an array of limit-cycle oscillators[J].Journal of Statistical Physics,1990, 60(1/2): 245-262.
|
[10] |
Collins J J, Stewart I N. Coupled nonlinear oscillators and the symmetries of animal gaits[J].Journal of Nonlinear Science,1993, 3(1): 349-392.
|
[11] |
Daido H. Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: bifurcation of the order function[J].Physica D,1996, 91(1/2): 24-66.
|
[12] |
Pecora L M. Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems[J].Physical Review E,1998, 58(1): 347-360.
|
[13] |
Zhang C R, Zheng B D, Wang L C. Multiple Hopf bifurcation of three coupled van der Pol oscillators with delay[J].Applied Mathematics and Computation,2011, 217(1): 7155-7166.
|
[14] |
Song Y L, Xu J, Zhang T H. Bifurcation, amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling[J].Chaos,2011, 21(2):023111.
|
[15] |
Barrón M A, Sen M. Synchronization of four coupled van der Pol oscillators[J].Nonlinear Dynamics,2009, 56(4):357-367.
|
[16] |
Hirano N, Rybicki S. Existence of limit cycles for coupled van der Pol equations[J].Journal of Differential Equations,2003, 195(1):194-209.
|
[17] |
Kovacic I, Mickens R E. A generalized van der Pol type oscillator: investigation of the properties of its limit cycle[J].Mathematical and Computer Modelling,2012, 55(9): 645-653.
|
[18] |
Zhang C M, Li W X, Wang K. Boundedness for network of stochastic coupled van der Pol oscillators with time-varying delayed coupling[J].Applied Mathematical Modelling, 2013, 37(7): 5394-5402.
|
[19] |
Xiao M, Zheng W X, Cao J D. Approximate expressions of a fractional order van der Pol oscillator by the residue harmonic balance method[J].Mathematics and Computers in Simulation, 2013, 89(1): 1-12.
|
[20] |
Niebur E, Schuster H G, Kammen D. Collective frequencies and metastability in networks of limit-cycle oscillators with time delay[J].Physical Review Letters,1991, 67(20): 2753-2756.
|
[21] |
Nakamura Y, Tominaga F, Munakata T. Clustering behavior of time-delayed nearest-neighbor coupled oscillators[J].Physical Review E,1994, 49(6): 4849-4856.
|
[22] |
Seunghwan K, Seon H, Ryu C S. Multistability in coupled oscillator systems with time delay[J].Physical Review Letters,1997, 79(15): 2911-2914.
|
[23] |
Wang W Y, Xu J. Multiple scales analysis for double Hopf bifurcation with 1∶3 resonance[J].Nonlinear Dynamics,2011, 66(1/2): 39-51.
|
[24] |
Luongo A, Paolone A, Di Egidio A. Multiple timescales analysis for 1∶2 and 1∶3 resonant Hopf bifurcations[J].Nonlinear Dynamics,2003, 34(3/4)∶ 269-291.
|