留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FETI的非协调等几何分析

祝雪峰 胡平 马正东 刘炜

祝雪峰, 胡平, 马正东, 刘炜. 基于FETI的非协调等几何分析[J]. 应用数学和力学, 2013, 34(8): 771-781. doi: 10.3879/j.issn.1000-0887.2013.08.001
引用本文: 祝雪峰, 胡平, 马正东, 刘炜. 基于FETI的非协调等几何分析[J]. 应用数学和力学, 2013, 34(8): 771-781. doi: 10.3879/j.issn.1000-0887.2013.08.001
ZHU Xue-feng, HU Ping, MA Zheng-dong, LIU Wei. Nonconforming Isogeometric Analysis With FETI Method[J]. Applied Mathematics and Mechanics, 2013, 34(8): 771-781. doi: 10.3879/j.issn.1000-0887.2013.08.001
Citation: ZHU Xue-feng, HU Ping, MA Zheng-dong, LIU Wei. Nonconforming Isogeometric Analysis With FETI Method[J]. Applied Mathematics and Mechanics, 2013, 34(8): 771-781. doi: 10.3879/j.issn.1000-0887.2013.08.001

基于FETI的非协调等几何分析

doi: 10.3879/j.issn.1000-0887.2013.08.001
基金项目: 国家自然科学基金重点资助项目(10932003;11272075);国家重点基础研究发展计划资助项目(973计划,2010CB832700);国家工信部04重大专项项目基金资助项目(2011ZX04001-021)
详细信息
    作者简介:

    祝雪峰(1979—),男,河北人,师资博士后,博士(Tel:+86-411-84706475;E-mail:xuefeng@dlut.edu.cn);胡平(1956—),男,吉林人,教授,博士,博士生导师(通讯作者.Tel:+86-411-84702573;E-mail:pinghu@dlut.edu.cn).

  • 中图分类号: O302

Nonconforming Isogeometric Analysis With FETI Method

  • 摘要: 基于非均匀有理B样条的等几何分析方法是一种无需网格划分的新的计算方法,旨在实现直接利用CAD模型进行分析,有望取代目前传统有限元技术.等几何分析已被成功应用在固体力学,流固耦合及拓扑优化等诸多领域.等几何分析方法要求CAD曲面或者实体高阶连续,而绝大多数CAD模型内多个曲面不但无法保持高阶连续,而且在公共界面处是几何非协调的.这一缺陷严重制约了等几何分析技术的进一步发展和应用.另外,由于采用高阶单元,等几何分析计算量较等自由度传统有限元要耗时.为解决这些难题,笔者在先前工作基础之上,提出了基于FETI方法的非协调等几何分析.新方法较以往的零空间解法更加快捷,适用于大规模数据的并行计算.数值算例表明本方法无需修改CAD模型,实施简单,精度满足要求,可处理复杂CAD模型.
  • [1] Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J].Computer Methods in Applied Mechanics and Engineering,2005, 194(39/41): 4135-4195.
    [2] Cottrell J A, Hughes T J R, Reali A. Studies of refinement and continuity in isogeometric structural analysis[J]. Computer Methods in Applied Mechanics and Engineering,2007, 196(41/44): 4160-4183.
    [3] Bazilevs Y, Hsu M C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar T E. 3D simulation of wind turbine rotors at full scale—part I: geometry modeling and aerodynamics[J].International Journal for Numerical Methods in Fluids,2011, 65(1/3): 207-235.
    [4] Bazilevs Y, Calo V M, Zhang Y, Hughes T J R. Isogeometric fluidstructure interaction analysis with applications to arterial blood flow[J].Computational Mechanics,2006, 38(4/5): 310-322.
    [5] Wall W A, Frenzel M A, Cyron C. Isogeometric structural shape optimization[J].Computer Methods in Applied Mechanics and Engineering,2008, 197(33/40): 2976-2988.
    [6] 王东东, 轩军厂, 张灿辉. 几何精确 NURBS 有限元中边界条件施加方式对精度影响的三维计算分析[J]. 计算力学学报, 2012, 29(1):31-37.(WANG Dong-dong, XUAN Jun-chang, ZHANG Can-hui. A three dimensional computational investigation on the influence of essential boundary condition imposition in NURBS isogeometric finite element analysis[J].Chinese Journal of Computational Mechanics,2012, 29(1): 31-37.(in Chinese))
    [7] 张勇, 林皋, 胡志强, 钟红. 基于等几何分析的比例边界有限元方法[J]. 计算力学学报, 2012, 29(3): 433-438. (ZHANG Yong, LIN Gao, HU Zhi-qiang, ZHONG Hong. Scaled boundary finite element method based on isogeometric analysis[J].Chinese Journal of Computational Mechanics,2012, 29(3): 433-438.(in Chinese))
    [8] 祝雪峰, 马正东, 胡平. 几何精确的非协调等几何分析[J]. 固体力学学报, 2012, 33(5): 487492.(ZHU Xue-feng, MA Zheng-Dong, HU Ping. Nonconforming isogeometric analysis with exact geometry[J].Chinese Journal of Solid Mechanics,2012, 33(5):487-492. (in Chinese))
    [9] Cottrell J A, Hughes T J R, Bazilevs Y.Isogeometric Analysis: Toward Integration of CAD and FEA [M]. Wiley, 2009.
    [10] Piegl L A, Tiller W.The NURBS Book [M]. 2nd ed. Monographs in Visual Communication. Springer Verlag, 1997.
    [11] Farhat C, Roux F X. A method of finite element tearing and interconnecting and its parallel solution algorithm[J].International Journal for Numerical Methods in Engineering,1991, 32(6): 1205-1227.
    [12] Farhat C, Roux F. Implicit parallel processing in structural mechanics[J].Computational Mechanics Advances,1994, 2(1): 1-124.
    [13] Farhat C, Lesoinne M, Le Tallec P, Pierson K, Rixen D. FETIDP: a dual-primal unified FETI method?—part I: a faster alternative to the twolevel FETI method[J].International Journal for Numerical Methods in Engineering,2001, 50(7): 1523-1544.
  • 加载中
计量
  • 文章访问数:  2246
  • HTML全文浏览量:  76
  • PDF下载量:  1889
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-24
  • 修回日期:  2013-07-01
  • 刊出日期:  2013-08-15

目录

    /

    返回文章
    返回