留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂动力巨系统中子系统行为间相关性研究的一种新方法

林勇新 陈予恕 王丹 曹庆杰

林勇新, 陈予恕, 王丹, 曹庆杰. 复杂动力巨系统中子系统行为间相关性研究的一种新方法[J]. 应用数学和力学, 2013, 34(9): 917-928. doi: 10.3879/j.issn.1000-0887.2013.09.005
引用本文: 林勇新, 陈予恕, 王丹, 曹庆杰. 复杂动力巨系统中子系统行为间相关性研究的一种新方法[J]. 应用数学和力学, 2013, 34(9): 917-928. doi: 10.3879/j.issn.1000-0887.2013.09.005
LIN Yong-xin, CHEN Yu-shu, WANG Dan, CAO Qing-jie. New Approach to the Correlation Measurement for Subsystems in a Complex Giant System[J]. Applied Mathematics and Mechanics, 2013, 34(9): 917-928. doi: 10.3879/j.issn.1000-0887.2013.09.005
Citation: LIN Yong-xin, CHEN Yu-shu, WANG Dan, CAO Qing-jie. New Approach to the Correlation Measurement for Subsystems in a Complex Giant System[J]. Applied Mathematics and Mechanics, 2013, 34(9): 917-928. doi: 10.3879/j.issn.1000-0887.2013.09.005

复杂动力巨系统中子系统行为间相关性研究的一种新方法

doi: 10.3879/j.issn.1000-0887.2013.09.005
基金项目: 国家自然科学基金资助项目(10632040;1172065)
详细信息
    作者简介:

    林勇新(1974—),男,黑龙江哈尔滨人,博士生(E-mail: linyongxin7406@126.com);陈予恕(1931—),男,山东肥城人,教授,博士生导师,俄罗斯科学院外籍院士,中国工程院院士

  • 中图分类号: O175;O241

New Approach to the Correlation Measurement for Subsystems in a Complex Giant System

Funds: The National Natural Science Foundation of China(10632040;1172065)
  • 摘要: 复杂开放巨系统内部关系错综复杂并具有动态特征,提出了非线性相互预测算法,分析一类复杂巨系统的内部多个子系统之间行为的相互关系及表征其非线性依赖关系的耦合强度.该方法在相空间重构的基础上,仅通过小数据和微信号可得到表征子系统间依赖关系的判别值,进而通过对判别值的分析得到了各子系统的行为特征及其相互作用关系.同时文中得到的子系统间的相互作用机制,可以为金融危机的理论分析提供非线性相互预测度量.
  • [1] Quyen M L V, Martinerie J, Adam C, Varela F J.Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy[J]. Physica D,1999,127(3/4):250-266.
    [2] Amhold J, Grassberger P, Lehnertz K, Elger C E. A robust method for detecting interdependences:application to intracranially recorded EEG[J]. Physica D,1999,134:419-430.
    [3] Breakspear M, Terry J R. Detection and description of nonlinear interdependence in normal multichannel human EEG data[J]. Clinical Neurophysiology,2002,113(5): 735-753.
    [4] Radhakrishna R K A, Yeragani V K. Decreased chaos and increased nonlinearity of heart rate time series inpatients with panic disorder[J]. Auton Neurosci,2001,88(1/2): 99-108.
    [5] 陆振波, 蔡志明, 姜可宇. 基于奇异值分解的混沌时间序列Volterra预测[J].武汉科技大学学报(交通科学与工程版), 2007,31(4):672-675.(LU Zhen-bo, CAI Zhi-ming, JIANG Ke-yu. Prediction of chaotic time series using singular value decomposition Volterra filter[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering),2007,31(4):672-675. (in Chinese))
    [6] Gu H, Wang H W. Fuzzy prediction of chaotic time series based on singular value decomposition[J]. Applied Mathematics and Computation,2007,185(2): 1171-1185.
    [7] DONG Xiao-meng, LUO Feng-juan, GUO Man-cai, YUAN Zhi-fa. Application of the autoregressive model of time series on the rainfall forecast of Yangling district[J]. Chinese Agricultural Science Bulletin,2007,23:403-407.
    [8] Landsamn A S , Schwartz I B. Complete chaotic synchronization in mutually coupled time-delayed system[J]. Physical Review E,2007,75(2): 1-8.
    [9] Schiff S J, So P, Chang T, Burke R E, Sauer T.Detecting dynamical interdependence and generalized synchorony through mutual prediction in a neural ensemble[J]. Physical Review E,1996,54(6):6708-6724.
    [10] Rulkov N F, Sushchik M M, Tsimring L S, Abarbanel H D I.Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Physical Review E,2005,51(2): 980-994.
    [11] Pompe B. Measuring statistical dependences in a time series[J].Journal of Statistical Physics,1993,73(3/4): 587-610.
    [12] Baele L, Inghelbrecht K. Timevarying integration, interdependence and contagion[J]. Journal of International Money and Finance,2010,29(5): 791-818.
    [13] Ang A, Bekaert G. International asset allocation with timevarying correlation[J].Review of Financial Studies,2002,15(4):1137-1187.
    [14] Pompe B, Blidh P, Hoyer D, Eiselt M.Using mutual information to measure coupling in the cardiores piratory system[J].IEEE Engineering in Medicine and Biology,1998,17(6): 32-39.
    [15] Hoyer D, Bauer R, Walter B, Zwiener U.Estimation of nonlinear couplings on the basis of complexity and predictability—a new method applied to cardiorespiratory coordination[J]. Transaction on Biomedical Engineering,1998,45(5):545-552.
    [16] 林勇新, 陈予恕, 曹庆杰. 一类金融系统行为的非线性混沌分析[J].应用数学和力学, 2010,31(10): 1239-1248.(LIN Yong-xin, CHEN Yu-shu, CAO Qing-jie. Nonlinear and chaotic analysis of a financial complicated system[J].Applied Mathematics and Mechanics, 2010,31(10):1239-1248. (in Chinese))
    [17] 马军海, 陈予恕. 低维混沌时序非线性动力系统的预测方法及其应用研究[J].应用数学和力学, 2001,22(5): 441-448.(MA Jun-hai, CHEN Yu-shu. Study on the prediction method of lowdimension time series that arise from the intrinsic non-linear dynamics [J]. Applied Mathematics and Mechanics, 2001,22 (5) : 441-448. (in Chinese))
    [18] 马军海, 陈予恕, 辛宝贵. 基于非线性混沌时序动力系统的预测方法研究[J]. 应用数学和力学, 2004,25(6): 551557.(MA Jun-hai, CHEN Yu-shu, XIN Bao-gui. Study on prediction methods for dynamic systems of nonlinear chaotic time-series[J]. Applied Mathematics and Mechanics,2004,25(6) : 551-557. (in Chinese))
    [19] Castillo E, Gutierrez J M. Nonlinear time series modeling and prediction using functional networks extracting information masked by chaos[J]. Phys Lett A, 1998,244(5):71-84.
    [20] Schroer C G, Sauer T, Ott E, Yorke J A. Predicting chaotic most of the time from embeddings with self-intersections[J]. Phys Rev Lett,1998,80(7): 1410-1412.
    [21] 马军海, 陈予恕, 刘曾荣. 动力系统实测数据的非线性混沌模型重构[J]. 应用数学和力学, 1999,20(11): 1128-1134.(MA Jun-hai, CHEN Yu-shu, LIU Zeng-rong. The nonlinear chaotic model reconstruction for the experimental data obtained from different dynamic system [J].Applied Mathematics and Mechanics,1999,20(11) : 1128-1134. (in Chinese))
    [22] Takens F. Detecting strange attractors in turbulence[J]. Lecture Notes in Mathematics,1981,898: 366-381.
    [23] Arthur W B. Complexity and the economy[J].Science,1999,284(5411):107-109.
    [24] Gelfand A E.Ensemble Modellng [M]. Marcel Dekker Inc, 1984.
    [25] 米歇尔.沃尔德罗普. 复杂:诞生于秩序与混沌边缘的科学[M]. 陈玲 译. 北京:三联书店出版社, 1998.(Michelle Waldrop.Complex: Science Origin From the Order and the Edge of Chaos [M]. CHEN Ling Trans. Beijng: SDX Joint Publishing Company, 1998. (in Chinese))
    [26] 钱学森, 于景元, 戴汝为. 一个科学新领域——开放的复杂巨系统及其方法论[J].自然杂志, 1990,13(1):1-10. (Tsien Hsue-shen, YU Jing-yuan, DAI Ru-wei .A new field of science—the study of open complex giant system and its methodology[J]. Chinese Journal of Nature,1991,13(1): 1-10.(in Chinese))
    [27] 戴汝为. 复杂巨系统科学——一门21世纪的科学[J]. 自然杂志, 1997,19(4):187-192.(DAI Ru-wei. Complex giant system science—a science of the 21st century[J]. Chinese Journal of Nature,1997,19(4): 187-192.(in Chinese))
    [28] Cao L Y, Mee A, Judd K. Dynamics from multivariate time series[J]. Physica D,1998,121(1/2):75-88.
  • 加载中
计量
  • 文章访问数:  1416
  • HTML全文浏览量:  133
  • PDF下载量:  902
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-08
  • 修回日期:  2013-05-27
  • 刊出日期:  2013-09-15

目录

    /

    返回文章
    返回