留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散时间型复值神经网络的全局指数周期性

胡进 宋乾坤

胡进, 宋乾坤. 离散时间型复值神经网络的全局指数周期性[J]. 应用数学和力学, 2013, 34(9): 929-940. doi: 10.3879/j.issn.1000-0887.2013.09.006
引用本文: 胡进, 宋乾坤. 离散时间型复值神经网络的全局指数周期性[J]. 应用数学和力学, 2013, 34(9): 929-940. doi: 10.3879/j.issn.1000-0887.2013.09.006
HU Jin, SONG Qian-kun. Global Exponential Periodicity of Discrete-Time Complex-Valued Neural Networks With Time-Delays[J]. Applied Mathematics and Mechanics, 2013, 34(9): 929-940. doi: 10.3879/j.issn.1000-0887.2013.09.006
Citation: HU Jin, SONG Qian-kun. Global Exponential Periodicity of Discrete-Time Complex-Valued Neural Networks With Time-Delays[J]. Applied Mathematics and Mechanics, 2013, 34(9): 929-940. doi: 10.3879/j.issn.1000-0887.2013.09.006

离散时间型复值神经网络的全局指数周期性

doi: 10.3879/j.issn.1000-0887.2013.09.006
基金项目: 国家自然科学基金资助项目(61273021); 重庆市自然科学基金(重点)资助项目(cstc2013jjB40008)
详细信息
    作者简介:

    胡进(1980—),男,湖北襄阳人, 讲师,博士(E-mail: victorjhu@gmail.com);宋乾坤(1963—),男,教授,博士(通讯作者. E-mail:qiankunsong@163.com).

  • 中图分类号: O175.13

Global Exponential Periodicity of Discrete-Time Complex-Valued Neural Networks With Time-Delays

Funds: The National Natural Science Foundation of China(61273021)
  • 摘要: 复值神经网络是神经网络的一个分支,也是最近几年快速发展的一个领域,在图像处理、模式识别、联想记忆等方面有广泛的应用.目前,对于复值神经网络动力学方面的研究主要集中在稳定性上,对于离散时间型复值神经网络周期性的研究还几乎没有.首先将连续时间型复值神经网络模型离散化得到离散时间型复值神经网络模型,然后利用M矩阵理论、不等式技巧和Lyapunov方法,获得了全局指数周期性的一个充分条件,最后给出的具有仿真的数值例子验证了获得结果的有效性.
  • [1] Cao J. Periodic oscillation and exponential stability of delayed CNNs[J]. Phyics Letter A,2000,270(3/4): 157-163.
    [2] Cao J, Wang J. Global exponential stability and periodicity of recurrent-neural networks with time delays[J]. IEEE Transactions on Circuits and SystemsI: Regular Papers,2005,52(5): 920-931.
    [3] Chen B, Wang J. Global exponential periodicity of a class of recurrent-neural networks with oscillating parameters and timevarying delays[J]. IEEE Transactions on Neural Networks,2005,16(6): 1440-1448.
    [4] Chen T. Global exponential stability of delayed Hopfield neural networks[J]. Neural Networks,2001,14(8): 977-980.
    [5] Ji Y. Global attractivity of almost periodic sequence solutions of delayed discretetime neural networks[J]. Arabian Journal for Science and Engineering,2011,36(7): 1447-1459.
    [6] Li C, Liao X, Yu J. Complex valued recurrent neural network with IIR neural model: training and applications[J]. Circuits Systems Signal Processing,2002,21(5): 461-471.
    [7] Liao X, Wang L, Yu P. Stability of Dynamical Systems [M]. Vol 5. Monograph Series on Nonlinear Science and Complexity.Amsterdam, The Netherlands: Elsevier, 2007.
    [8] Mohamad S, Gopalsamy K. Dynamics of a class of discrete-time neural-networks and their continuous-time counterparts[J]. Mathematics and Computers in Simulation,2000,53(1/2): 1-39.
    [9] Sun C, Feng C B. Exponential periodicity of continuous-time and discrete-time neural networks with delays[J]. Neural Processing Letters,2004,19(2): 131-146.
    [10] Bohner M, Rao V S H, Sanyal S. Global stability of complex-valued-neural networks on time scales[J]. Differential Equations and Dynamical Systems,2011,19(1/2): 3-11.
    [11] Hirose A. Complex-Valued Neural Networks: Theories and Applications [M].Singapore: World Scientific, 2003.
    [12] Hirose A. Complex-Valued Neural Networks [M]. Heidelberg, German: Springer, 2006.
    [13] Hu J, Wang J. Global stability of complex-valued recurrent neural-networks with time-delays[J]. IEEE Transcations on Neural Networks and Learning Systems,2012,23(6): 853-865.
    [14] Jankowski S, Lozowski A, Zurada J. Complex-valued multistate neural-associative memory[J]. IEEE Transactions on Neural Networks,1996,7(6): 1491-1496.
    [15] Lee D L. Improving the capacity of complex-valued neural networks with a modified gradient descent learning rule[J]. IEEE Transactions on Neural Networks,2001,12(2): 439-443.
    [16] Lee D L. Relaxation of the stability condition of the complex-valued neural networks[J]. IEEE Transactions on Neural Networks,2001,12(5): 1260-1262.
    [17] Rudin R. Real and Complex Analysis [M]. New York: McGrawHill, 1987.
    [18] DUAN Cheng-jun, SONG Qian-kun. Boundedness and stability for discrete-time delayed neural network with complex-valued linear threshold neurons[J]. Discrete Dynamics in Nature and Society,2010,2010: 1-19.
    [19] Kobayashi M. Exceptional reducibility of complex-valued neural networks[J]. IEEE Transactions on Neural Networks,2010,21(7): 1060-1072.
    [20] Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences [M]. New York: Academic Press, 1979.
  • 加载中
计量
  • 文章访问数:  1591
  • HTML全文浏览量:  123
  • PDF下载量:  947
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-13
  • 修回日期:  2013-06-22
  • 刊出日期:  2013-09-15

目录

    /

    返回文章
    返回