留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构造Birkhoff函数(组)的参数调节法

宋端 刘畅 郭永新

宋端, 刘畅, 郭永新. 构造Birkhoff函数(组)的参数调节法[J]. 应用数学和力学, 2013, 34(9): 995-1002. doi: 10.3879/j.issn.1000-0887.2013.09.013
引用本文: 宋端, 刘畅, 郭永新. 构造Birkhoff函数(组)的参数调节法[J]. 应用数学和力学, 2013, 34(9): 995-1002. doi: 10.3879/j.issn.1000-0887.2013.09.013
SONG Duan, LIU Chang, GUO Yong-xin. Parameter-Adjusting Method of Constructing Birkhoffian Functions[J]. Applied Mathematics and Mechanics, 2013, 34(9): 995-1002. doi: 10.3879/j.issn.1000-0887.2013.09.013
Citation: SONG Duan, LIU Chang, GUO Yong-xin. Parameter-Adjusting Method of Constructing Birkhoffian Functions[J]. Applied Mathematics and Mechanics, 2013, 34(9): 995-1002. doi: 10.3879/j.issn.1000-0887.2013.09.013

构造Birkhoff函数(组)的参数调节法

doi: 10.3879/j.issn.1000-0887.2013.09.013
基金项目: 国家自然科学基金资助项目(11172120;11202090;10932002)
详细信息
    作者简介:

    宋端(1962—),女,辽宁丹东人,副教授;郭永新(1963—),男,辽宁东港人,教授(通讯作者. E-mail:yxguo@lnu.edu.cn).

  • 中图分类号: O316

Parameter-Adjusting Method of Constructing Birkhoffian Functions

Funds: The National Natural Science Foundation of China(11172120;11202090;10932002)
  • 摘要: 根据偏微分方程的Cauchy-Kovalevski可积性定理,将欠定的Birkhoff方程组转化为以Birkhoff函数组为未知变量的完备的偏微分方程组,提出了构造Birkhoff动力学函数的参数调节法.通过调节补偿方程中的两类可调的函数参数就能得到不同的Birkhoff函数组.并把构造Birkhoff函数组的参数调节法与Santilli构造方法进行了比较,例如研究了利用动力学系统独立的第一积分构造Birkhoff函数组的Hojman方法与参数调节法之间的关系.最后,给出应用实例验证了参数调节法的实用性及其与Santilli 3种构造方法的关系
  • [1] Birkhoff G D.Dynamical Systems[M]. New York: AMS College Publishers Providence, RI, Vol9, 1927.
    [2] Santilli R M.Foundations of Theoretical Mechanics II[M]. New York: SpringerVerlag, 1983.
    [3] 梅凤翔, 史荣昌, 张永发, 吴惠彬. Birkhoff系统动力学[M]. 北京:北京理工大学出版社, 1996.(MEI Feng-xiang, SHI Rong-chang, ZHANG Yong-fa, WU Hui-bin.Dynamics of Birkhoffian Systems[M]. Beijing: Beijing Institute of Technology Press, 1996.(in Chinese))
    [4] Hojman S. Construction of genotypic transformations for first order systems of differential equations[J].Hadronic J,1981,5: 174-184.
    [5] Ionescu D. A geometric Birkhoffian formalism for nonlinear RLC networks[J].J Geom Phys,2006,56(12): 2545-2572.
    [6] Ionescu D, Scheurle J. Birkhoffian formulation of the dynamics of LC circuits[J]. Z angew Math Phys,2007,58(2): 175-208.
    [7] GUO Yong-xin, LIU Chang, LIU Shi-xing. Generalized Birkhoffian realization of nonholonomic systems[J].Communications in Mathematics,2010,18(1): 21-35.
    [8] LIU Shi-xing, LIU Chang, GUO Yong-xin. Geometric formulations and variational integrators of discrete autonomous Birkhoff systems[J].Chin Phys B,2011,20(3): 034501.
    [9] Sun Y J, Shang Z J. Structure-preserving algorithms for Birkhoffian systems[J].Phys Lett A,2005,336(4/5): 358-369.
    [10] Van der Schaft A J, Maschke B M. On the Hamiltonian formulation of nonholonomic mechanical systems[J].Rep Math Phys,1994,34(2): 225-233.
    [11] Bloch A M, Fernandez O E, Mestdag T. Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations[J].Rep Math Phys,2009,63(2): 225-249.
    [12] LIU Chang, LIU Shi-xing, GUO Yong-xin. Inverse problem for Chaplygin’s nonholonomic systems[J].Sci China Tech Sci,2011,54(8): 2100-2106.
    [13] 刘畅, 宋端, 刘世兴, 郭永新. 非齐次Hamilton系统的Birkhoff表示[J]. 中国科学:物理学 力学 天文学, 2013,43(4): 541-548. (LIU Chang, SONG Duan, LIU Shi-xing, GUO Yong-xin. Birkhoffian representation of non-homogenous Hamiltonian systems[J].Sci Sin Phys Mech Astron,2013,43(4): 541-548.(in Chinese))
    [14] Guo Y X, Luo S K, Shang M, Mei F X. Birkhoffian formulation of nonholonomic constrained systems[J].Rep Math Phys,2001,47(3): 313-322.
    [15] Courant R, Hilbert D.Methods of Mathematical Physics II[M]. New York: Interscience Publishers, 1966.
  • 加载中
计量
  • 文章访问数:  1652
  • HTML全文浏览量:  153
  • PDF下载量:  958
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-22
  • 修回日期:  2013-09-09
  • 刊出日期:  2013-09-15

目录

    /

    返回文章
    返回