留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于辛理论的Timoshenko梁波散射分析

吴锋 徐小明 高强 钟万勰

吴锋, 徐小明, 高强, 钟万勰. 基于辛理论的Timoshenko梁波散射分析[J]. 应用数学和力学, 2013, 34(12): 1225-1235. doi: 10.3879/j.issn.1000-0887.2013.12.001
引用本文: 吴锋, 徐小明, 高强, 钟万勰. 基于辛理论的Timoshenko梁波散射分析[J]. 应用数学和力学, 2013, 34(12): 1225-1235. doi: 10.3879/j.issn.1000-0887.2013.12.001
WU Feng, XU Xiao-ming, GAO Qiang, ZHONG Wan-xie. Analyzing the Wave Scattering in Timoshenko Beam Based on the Symplectic Theory[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1225-1235. doi: 10.3879/j.issn.1000-0887.2013.12.001
Citation: WU Feng, XU Xiao-ming, GAO Qiang, ZHONG Wan-xie. Analyzing the Wave Scattering in Timoshenko Beam Based on the Symplectic Theory[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1225-1235. doi: 10.3879/j.issn.1000-0887.2013.12.001

基于辛理论的Timoshenko梁波散射分析

doi: 10.3879/j.issn.1000-0887.2013.12.001
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2009CB918501)
详细信息
    作者简介:

    吴锋(1985—),男,江苏靖江人,博士生(E-mail: wufeng-chn@163.com)

  • 中图分类号: O302

Analyzing the Wave Scattering in Timoshenko Beam Based on the Symplectic Theory

Funds: The National Basic Research Program of China (973 Program)(2009CB918501)
  • 摘要: 基于应用力学对偶理论,综合运用了辛Gramme-Schmidt正交化算法,辛本征解的独立性,辛两端边值问题精细积分法等特色理论,分析Timoshenko(铁木辛柯)梁的能带结构,以及端部散射体对于波的散射
  • [1] 徐志胜, 翟婉明, 王开云. 基于Timoshenko梁模型的车辆-轨道耦合振动分析[J]. 西南交通大学学报, 2003,38(1): 22-27.(XU Zhi-sheng, ZHAI Wan-ming, WANG Kai-yun. Analysis of vehicle-track coupling vibration based on Timoshenko beam model[J]. Journal of Southwest Jiaotong University,2003,38(1): 22-27.(in Chinese))
    [2] 孙景江, 江近仁. 高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元[J]. 地震工程与工程振动, 2001,21(2): 78-83.(SUN Jing-jiang, JIANG Jin-ren. Extended Timoshenko layered beam element for nonlinear analysis of RC high-rise buildings with structural walls[J]. Earthquake Engineering and Engineering Vibration,2001,21(2): 78-83.(in Chinese))
    [3] 陈勇, 刘盼. 等截面铁摩辛柯梁-抗转阻尼器系统的复模态特性[J]. 振动与冲击, 2012,31(23): 174-179.(CHEN Yong, LIU Pan. Complex modal characteristic of a uniform Timoshenko beam with rotational dampers[J].Journal of Vibration and Shock,2012,31(23): 174-179.(in Chinese))
    [4] 杨小姜, 施伟辰. 基于欧拉-伯努利梁和铁木辛柯梁理论的功能梯度材料模量测定[J]. 计算机辅助工程, 2012,21(5): 25-29.(YANG Xiao-jiang, SHI Wei-chen. Modulus determination of functionally graded materials based on theories of Euler-Bernoulli beam and Timoshenko beam[J]. Computer Aided Engineering,2012,21(5): 25-29.(in Chinese))
    [5] 赵莉, 陈伟球. 功能梯度材料铁木辛柯梁的波传播分析[C]//第二届全国压电和声波理论及器件技术研讨会. 杭州, 2006: 89-91.(ZHAO Li, CHEN Wei-qiu. The wave propagation in Timoshenko beam made of functionally graded materials[C]// The secondsymposium on Piezoelectricity, Acoustic Waves, and Device Applications . Hangzhou, 2006: 89-91.(in Chinese))
    [6] 管德清, 蒋欣. 基于小波分析的Timoshenko梁裂缝识别研究[J]. 振动与冲击, 2007,26(5): 67-70.(GUAN De-qing, JIANG Xin. Crack detect of Timoshenko beam based on the wave-let method[J]. Journal of Vibration and Shock,2007,26(5): 67-70(in Chinese))
    [7] 侯涛, 张孝卫, 刘洪涛, 袁玉杰. 铁木辛柯弹性稳定理论在深水桩自由站立分析中的应用[J]. 中国海洋平台, 2010,25(2): 34-38.(HOU Tao, ZHANG Xiao-wei, LIU Hong-tao, YUAN Yu-jie. Pile stick up analysis with Timoshenko theory of elastic stability[J]. China Offshore Platform,2010,25(2): 34-38.(in Chinese))
    [8] 金磊. 铁木辛柯梁的Winkler边界对偶求解辛方法[J]. 山西建筑, 2012,38(26): 56-57.(JIN Lei. Symplectic algorithm for Timoshenko beam with Winkler boundary[J]. Shanxi Architecture,2012,38(26): 56-57.(in Chinese))
    [9] 楼梦麟, 任志刚. Timoshenko简支梁的振动模态特性精确解[J]. 同济大学学报(自然科学版), 2002,30(8): 911-915.(LOU Meng-lin, REN Zhi-gang. Precise solution to modal characteristics of Timoshenko pin-ended beams[J]. Journal of Tongji University(Natural Science),2002,30(8): 911-915.(in Chinese))
    [10] 金晶, 邢誉峰. 铁木辛柯梁固有振动频率的边界元解法[J]. 北京航空航天大学学报, 2012,38(7): 976-980.(JIN Jing, XIN Yu-feng. Boundary element solution method of free vibration of Timoshenko beam[J]. Journal of Beijing University of Aeronautics and Astronautics,2012,38(7): 976-980.(in Chinese))
    [11] 崔灿, 李映辉. 变截面铁木辛柯梁振动特性快速计算方法[J]. 动力学与控制学报, 2012,10(3): 258-262.(CUI Can, LI Yin-hui. A solution for vibration characteristic of Timoshenko beam with variable cross-section[J]. Journal of Dynamics and Control,2012,10(3): 258-262.(in Chinese))
    [12] 陈镕, 万春风, 薛松涛, 唐和生. Timoshenko梁运动方程的修正及其影响[J]. 同济大学学报(自然科学版), 2005,33(6): 711-715.(CHEN Rong, WAN Chun-feng, XUE Song-tao, TANG He-sheng. Modification of motion equation of Timoshenko beam and its effect[J]. Journal of Tongji University(Natural Science),2005,33(6): 711-715.(in Chinese))
    [13] 邓军, 陈国平, 张方. 旋转铁木辛柯梁分布动态载荷的时域识别研究[J]. 机械科学与技术, 2011,30(6): 947-950, 956.(DENG Jun, CHEN Guo-ping, ZHANG Fang. Identification of distributed dynamic load on a rotating Timoshenko beam in time domain[J]. Mechanical Science and Technology for Aerospace Engineering,2011,30(6): 947-950, 956.(in Chinese))
    [14] 王振, 孙秦. 几何非线性分析的二维共旋铁摩辛柯梁单元[J]. 机械科学与技术, 2013,32(5): 665-669.(WANG Zhen, SUN Qin. Geometrically nonlinear analisys of 2-D corotational Timoshenko beam element[J]. Mechanical Sciene and Technology for Aerospace Engineering,2013,32(5): 665-669.(in Chinese))
    [15] 方剑宇, 韩小云, 蔡力, 郁殿龙. 考虑翘曲的周期铁摩辛柯梁的弯扭耦合振动带隙[J]. 振动与冲击, 2009,28(5): 146-149.(FANG Jian-yu, HAN Xiao-yun, CAI Li, YU Dian-long. Coupled flexural-torsional vibration band gap in periodic Timoshenko beam including warping effect[J]. Journal of Vibration and Shock,2009,28(5): 146-149.(in Chinese))
    [16] 方剑宇, 韩小云. 轴向受载的周期铁摩辛柯梁的弯扭耦合振动带隙研究[C]//第二十一届全国振动与噪声高技术及应用学术会议. 合肥, 2008: 97-103.(FANG Jian-yu, HAN Xiao-yun. The coupled flexural-torsional vibration and band structure of the axially loaded periodic Timoshenko beam[C]// The 21th National Conference on the High Technique and Application in Vibration and Noise . Heifei, 2008: 97-103.(in Chinese))
    [17] 钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.(ZHOGN Wan-xie. Symplectic Method in Applied Mechanics [M]. Beijing: Higher Education Press, 2006.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1753
  • HTML全文浏览量:  165
  • PDF下载量:  1264
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-11
  • 修回日期:  2013-10-11
  • 刊出日期:  2013-12-16

目录

    /

    返回文章
    返回