留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶Fornberg-Whitham方程及其改进方程的变分迭代解

鲍四元 邓子辰

鲍四元, 邓子辰. 分数阶Fornberg-Whitham方程及其改进方程的变分迭代解[J]. 应用数学和力学, 2013, 34(12): 1236-1246. doi: 10.3879/j.issn.1000-0887.2013.12.002
引用本文: 鲍四元, 邓子辰. 分数阶Fornberg-Whitham方程及其改进方程的变分迭代解[J]. 应用数学和力学, 2013, 34(12): 1236-1246. doi: 10.3879/j.issn.1000-0887.2013.12.002
BAO Si-yuan, DENG Zi-chen. Variational Iteration Solutions for Fractional FornbergWhitham Equation and Its Modified Equation[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1236-1246. doi: 10.3879/j.issn.1000-0887.2013.12.002
Citation: BAO Si-yuan, DENG Zi-chen. Variational Iteration Solutions for Fractional FornbergWhitham Equation and Its Modified Equation[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1236-1246. doi: 10.3879/j.issn.1000-0887.2013.12.002

分数阶Fornberg-Whitham方程及其改进方程的变分迭代解

doi: 10.3879/j.issn.1000-0887.2013.12.002
基金项目: 国家自然科学基金资助项目(11202146)
详细信息
    作者简介:

    鲍四元(1980—),男,安徽人,副教授,博士(通讯作者. E-mail: bsiyuan@126.com);邓子辰(1964—),男,西安人,教授,博士生导师(E-mail: dweifan@nwpu.edu.cn).

  • 中图分类号: O175.29

Variational Iteration Solutions for Fractional FornbergWhitham Equation and Its Modified Equation

Funds: The National Natural Science Foundation of China(11202146)
  • 摘要: 给出分数阶FornbergWhitham方程(FFW)并把其中非线性项uux换为u2ux后所得的改进Fornberg-Whitham方程的解.使用了分数阶变分迭代法(fractional variational iteration method,FVIM),其中Lagrange乘子由泛函和Laplace变换确定.讨论了分数阶次的数值在两种情况下FFW方程的解,因为确定FFW方程中时间微分的阶次需要比较原方程中含时间的两个微分的阶次.最后,给出两个使用分数阶变分迭代法的算例.算例结果证明了所提方法的有效性
  • [1] 孙文, 孙洪广, 李西成. 力学与工程问题的分数阶导数建模[M]. 北京:科学出版社, 2010.(SUN Wen, SUN Hong-guang, LI Xi-cheng. Modeling Using the Fractional Derivative in Mechanics and Engineering Problems [M]. Beijing: Science Press, 2010.(in Chinese))
    [2] Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations [M]. New York: Wiley, 1993.
    [3] Oldham K B, Spanier J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order [M]. New York: Academic Press, 1974.
    [4] Debnath L. Fractional integrals and fractional differential equations in fluid mechanics[J]. Fractional Calculus & Applied Analysis,2003, 6(2): 119-155.
    [5] Podlubny I. Fractional Differential Equations [M]. New York: Academic Press, 1999.
    [6] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier, 2006.
    [7] DENG Wei-hua. Short memory principle and a predictor-corrector approach for fractional differential equations[J]. Journal of Computational and Applied Mathematics,2007,206(1): 174-188.
    [8] Liu F W, Anh V, Turner I. Numerical solution of the space fractional Fokker-Planck equation[J]. Journal of Computational and Applied Mathematics,2004,166(1): 209-219.
    [9] Odibat Z, Momani S. A generalized differential transform method for linear partial differential equations of fractional order[J].Applied Mathematics Letters,2008,21(2): 194-199.
    [10] LIAO Shi-jun. A short review on the homotopy analysis method in fluid mechanics[J]. Journal of Hydrodynamics, Series B,2010,22(5): 882-884.
    [11] LI Chang-pin, WANG Yi-hong. Numerical algorithm based on Adomian decomposition for fractional differential equations[J]. Computers & Mathematics With Applications,2009, 57(10): 1672-1681.
    [12] Duan J S, Rach R, Buleanu D, Wazwaz A M. A review of the Adomian decomposition method and its applications to fractional differential equations[J]. Communications in Fractional Calculus,2012, 3(2): 73-99.
    [13] Momani S, Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order[J]. Physics Letters A,2007, 365(5/6): 345-350.
    [14] HE Ji-huan. Variational iteration method for delay differential equations[J]. Communications in Nonlinear Science and Numerical Simulation,1997, 2(4): 230-235.
    [15] GUO Shi-min, MEI Li-quan, LI Ying. Fractional variational homotopy perturbation iteration method and its application to a fractional diffusion equation[J]. Applied Mathematics and Computation,2013, 219(11): 5909-5917.
    [16] HE Ji-huan, WU Xu-hong. Variational iteration method: new development and applications[J]. Computers & Mathematics With Applications,2007, 54(7/8): 881-894.
    [17] HE Ji-huan. Asymptotic methods for solitary solutions and compactons[J]. Abstract and Applied Analysis,2012: 916793.
    [18] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法[J]. 物理学报, 2009, 58(11): 7397-7401.(MO Jia-qi, ZHANG Wei-jiang, CHEN Xian-feng. Variational iteration method for solving a class of strongly nonlinear evolution equations[J]. Acta Physica Sinica,2009, 58(11): 7397-7401.(in Chinese))
    [19] Abbasbandy S. A new application of He’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials[J]. Journal of Computational and Applied Mathematics,2007, 207(1): 59-63.
    [20] Noor M A, Mohyud-Din S T. Variational iteration method for solving higher-order nonlinear boundary value problems using He’s polynomials[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2008, 9(2): 141-156.
    [21] GENG Fa-zhan. A modified variational iteration method for solving Riccati differential equations[J]. Computers & Mathematics With Applications,2010, 60 (7): 1868-1872.
    [22] Ghorbani A, Momani S. An effective variational iteration algorithm for solving Riccati differential equations[J]. Applied Mathematics Letters,2010, 23(8): 922-927.
    [23] HE Bin, MENG Qing, LI Shao-lin. Explicit peakon and solitary wave solutions for the modified Fornberg-Whitham equation[J]. Applied Mathematics and Computation,2010, 217(5): 1976-1982.
    [24] Fornberg B, Whitham G B. A numerical and theoretical study of certain nonlinear wave phenomena[J]. Phil Trans R Soc A,1978, 289: 373-404.
    [25] Abidi F, Omrani K. The homotopy analysis method for solving the Fornberg-Whitham equation and comparison with Adomian’s decomposition method[J]. Computers & Mathematics With Applications,2010, 59(8): 2743-2750.
    [26] Gupta P K, Singh M. Homotopy perturbation method for fractional Fornberg-Whitham equation[J]. Computers & Mathematics With Applications,2011, 61(2): 250-254.
    [27] Saker M G, Erdogan F, Yildirim A. Variational iteration method for the time fractional Fornberg-Whitham equation[J]. Computers & Mathematics With Applications,2012, 63(9): 1382-1388.
    [28] Merdan M, Gokdogan A, Yildirim A, Mohyud-Din S T. Numerical simulation of fractional Fornberg-Whitham equation by differential transformation method[J]. Abstract and Applied Analysis,2012, 2012: 1-8.
    [29] Lu J. An analytical approach to the Fornberg-Whitham type equations by using the variational iteration method[J]. Computers & Mathematics With Applications,2011, 61(8): 2010-2013.
    [30] Javidi M, Raji M A. Combination of Laplace transform and homotopy perturbation method to solve the parabolic partial differential equations[J]. Commun Fract Calc,2012, 3(1): 10-19.
    [31] Singha J, Vitae A, Kumarb D, Vitae A, Kumar S. New treatment of fractional Fornberg-Whitham equation via Laplace transform[J]. Ain Shams Engineering Journal,2013, 4(3): 557-562.
    [32] Zeng D Q, Qin Y M. The Laplace-Adomian-Pade technique for the seepage flows with the Riemann-Liouville derivatives[J]. Commun Fract Calc,2012, 3(1): 26-29.
    [33] Tsai P Y, Chen C K. An approximate analytic solution of the nonlinear Riccati differential equation[J]. Journal of the Franklin Institute,2010, 347(10): 1850-1862.
    [34] WU Guo-cheng, Baleanu D. Variational iteration method for the Burgers’ flow with fractional derivatives—new Lagrange multipliers[J]. Applied Mathematical Modelling,2013, 37(9): 6183-6190.
  • 加载中
计量
  • 文章访问数:  1410
  • HTML全文浏览量:  103
  • PDF下载量:  1273
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-27
  • 修回日期:  2013-10-30
  • 刊出日期:  2013-12-16

目录

    /

    返回文章
    返回