留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天器非Keplerian运动的陀螺效应

李雪华 和兴锁

李雪华, 和兴锁. 航天器非Keplerian运动的陀螺效应[J]. 应用数学和力学, 2013, 34(12): 1266-1274. doi: 10.3879/j.issn.1000-0887.2013.12.005
引用本文: 李雪华, 和兴锁. 航天器非Keplerian运动的陀螺效应[J]. 应用数学和力学, 2013, 34(12): 1266-1274. doi: 10.3879/j.issn.1000-0887.2013.12.005
LI Xue-hua, HE Xing-suo. Gyroscopic Effect Produced During Non-Keplerian Motion of Spacecrafts[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1266-1274. doi: 10.3879/j.issn.1000-0887.2013.12.005
Citation: LI Xue-hua, HE Xing-suo. Gyroscopic Effect Produced During Non-Keplerian Motion of Spacecrafts[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1266-1274. doi: 10.3879/j.issn.1000-0887.2013.12.005

航天器非Keplerian运动的陀螺效应

doi: 10.3879/j.issn.1000-0887.2013.12.005
详细信息
    作者简介:

    李雪华(1982—), 女, 陕西人, 讲师,博士(通讯作者. E-mail: xhli0724@163.com)

  • 中图分类号: V412.4;O311

Gyroscopic Effect Produced During Non-Keplerian Motion of Spacecrafts

  • 摘要: 为了满足未来复杂空间操作对机动的要求,需要深入研究非Keplerian(开普勒)轨道的理论和方法.根据航天器运动的进动现象与陀螺进动的相似性,分析并给出了航天器环绕地球运动的陀螺效应的定义;在航天器动力学方程的基础上,建立了陀螺效应的数学模型,进而分析了陀螺效应影响下航天器的运动规律,为空间机动的更好实现提供了一种非Keplerian轨道的理论和方法.
  • [1] Vitins M. Kepler motion and gyration[J]. Celestial Mechanics,1978,17(2): 173-192.
    [2] Junkins J L, Turner J D. On the analogy between orbital dynamics and rigid body dynamics[J]. The Journal of the Astronautical Sciences,1979,17(4): 345-358.
    [3] Junkins J L, Singla P. How nonlinear is it? A tutorial on nonlinearity of orbit and attitude dynamics[J]. The Journal of the Astronautical Sciences,2004,52(1): 7-60.
    [4] 芮筱亭, 刘正福. 关于陀螺力矩的讨论及陀螺力矩在弹丸运动分析中的应用[J]. 兵工学报(弹箭分册), 1988(1): 52-61.(RUI Xiao-ting, LIU Zheng-fu. Discussion about gyroscopic moment and its applications in analysis for the movement of projectile [J]. Acta Armamentarii (Projectile),1988(1): 52-61.(in Chinese))
    [5] 崔新军. 陀螺力矩的力学实质及陀螺效应对弹丸运动规律的影响[J]. 弹箭与制导学报, 1996(4): 1-4, 11.(CUI Xin-jun. Mechanical essence of gyroscopic moment and its effect on the projectile movement[J]. Journal of Projectiles, Rockets, Missiles and Guidance,1996(4): 1-4, 11.(in Chinese))
    [6] 袁建平, 和兴锁. 航天器轨道机动动力学[M]. 北京: 中国宇航出版社, 2010.(YUAN Jian-ping, HE Xing-suo. Orbital Maneuvering Dynamics of Spacecraft [M]. Beijing: China Astronautic Publishing House, 2010.(in Chinese))
    [7] 曹静, 袁建平, 罗建军. 陀螺进动与强迫进动轨道[J]. 力学学报, 2013,45(3): 406-411. (CAO Jing, YUAN Jian-ping, LUO Jian-jun. Gyroscopic precession and forced precession orbit[J]. Chinese Journal of Theoretical and Applied Mechanics,2013,45(3): 406-411.(in Chinese))
    [8] 刘希珠, 雷玉田. 陀螺力学基础[M]. 北京: 清华大学出版社, 1987.(LIU Xi-zhu, LEI Yu-tian. Essential Gyroscopic Mechanics [M]. Beijing: Tsinghua University Press, 1987.(in Chinese))
    [9] 和兴锁. 理论力学[M]. 西安: 西北工业大学出版社, 2001.(HE Xing-suo. Theoretical Mechanics [M]. Xi’an: Northwest Polytechnic University Press, 2001.(in Chinese))
    [10] 郗晓宁, 王威, 高玉东. 近地航天器轨道基础[M]. 长沙: 国防科技大学出版社, 2003.(XI Xiao-ning, WANG Wei, GAO Yu-dong. Fundamentals of Near-Earth Spacecraft Orbit[M]. Changsha: National University of Defense Technology Press, 2003.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1389
  • HTML全文浏览量:  154
  • PDF下载量:  1277
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-27
  • 修回日期:  2013-07-08
  • 刊出日期:  2013-12-16

目录

    /

    返回文章
    返回