留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

几种典型板考虑初始荷载效应的基频近似解

刘德贵 周世军

刘德贵, 周世军. 几种典型板考虑初始荷载效应的基频近似解[J]. 应用数学和力学, 2013, 34(12): 1275-1284. doi: 10.3879/j.issn.1000-0887.2013.12.006
引用本文: 刘德贵, 周世军. 几种典型板考虑初始荷载效应的基频近似解[J]. 应用数学和力学, 2013, 34(12): 1275-1284. doi: 10.3879/j.issn.1000-0887.2013.12.006
LIU De-gui, ZHOU Shi-jun. Approximate Fundamental Frequency Solutions Under Initial Load Effect for 6 Typical Plates[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1275-1284. doi: 10.3879/j.issn.1000-0887.2013.12.006
Citation: LIU De-gui, ZHOU Shi-jun. Approximate Fundamental Frequency Solutions Under Initial Load Effect for 6 Typical Plates[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1275-1284. doi: 10.3879/j.issn.1000-0887.2013.12.006

几种典型板考虑初始荷载效应的基频近似解

doi: 10.3879/j.issn.1000-0887.2013.12.006
基金项目: 重庆市自然科学基金计划资助项目(CSTC.2010BB6048)
详细信息
    作者简介:

    刘德贵(1983—),男,四川广元人,博士生(E-mail: shll830520@163.com);周世军(1961—),男,甘肃甘谷人,教授,博士生导师(通讯作者. E-mail: sjzhou@163.com).

  • 中图分类号: TU313;O32

Approximate Fundamental Frequency Solutions Under Initial Load Effect for 6 Typical Plates

  • 摘要: 基于两组板考虑初始荷载效应的动力控制微分方程:一般形式的动力控制微分方程和极坐标形式的动力控制微分方程,运用Galerkin(伽辽金)法求解得到了简支矩形板、固支矩形板、简支等边三角形板、固支椭圆形板、简支圆形板和固支圆形板6种典型板考虑初始荷载效应的自由振动基频(第一阶频率)近似解.通过与相关文献提出的有限元法计算结果对比,验证了公式的正确性.基频近似解表达式简单明了,物理意义明确,清楚地说明了初始荷载及相关因素对板自由振动基频的影响,直观地说明了板的初始荷载效应这一概念.计算分析表明:初始荷载的存在增加了板的弯曲刚度,提高了板的自振频率.这种初始荷载效应对频率的影响主要受初始荷载大小、跨厚比及边界条件等因素的影响.在计算分析和设计中应考虑并重视这种初始荷载效应对板计算分析带来的影响.
  • [1] Takabatake H. Effects of dead loads in static beams[J]. Journal of Structural Engineering, ASCE,1990,116(4): 1102-1120.
    [2] Takabatake H. Effects of dead loads on natural frequencies of beams[J]. Journal of Structural Engineering, ASCE,1991,117(4): 1039-1052.
    [3] 周世军, 朱唏. 恒载对梁自振频率影响的分析[J]. 铁道学报, 1995,17(4): 98-103.(ZHOU Shi-jun, ZHU Xi. Analysis of effect of dead loads on natural frequencies of beams[J]. Journal of China Railway Society,1995,17(4): 98-103.(in Chinese))
    [4] 朱唏, 周世军. 分析恒载效应的有限元方法[J]. 工程力学, 1996,13(3): 54-60.(ZHU Xi, ZHOU Shi-jun. A finite element method for analyzing effect of dead loads[J]. Engineering Mechanics,1996,13(3): 54-60.(in Chinese))
    [5] ZHOU Shi-jun, ZHU Xi. Analysis of effect of dead loads on natural frequency of beams using finite element techniques[J]. Journal of Structural Engineering, ASCE,1996,122(5): 512-516.
    [6] 张家玮, 周世军. 恒载效应对拱形梁自振频率的影响分析[J]. 振动与冲击, 2009,28(8): 163-167.(ZHANG Jia-wei, ZHOU Shi-jun. Analysis on effect of dead loads on natural frequencies of arch beams[J]. Journal of Vibration and Shock,2009,28(8): 163-167.(in Chinese))
    [7] 张家玮, 周世军, 赵建昌. 考虑恒载效应的拱形梁静力近似解[J]. 计算力学学报, 2010,27(4): 655-660.(ZHANG Jia-wei, ZHOU Shi-jun, ZHAO Jian-chang. Approximate solutions of static arch beams considering static loads effect[J]. Chinese Journal of Computational Mechanics,2010,27(4): 655-660.(in Chinese))
    [8] 周世军, 张家玮. 恒载效应对拱形梁的影响分析[J]. 工程力学, 2010,27(7): 120-125.(ZHOU Shi-jun, ZHANG Jia-wei. Analysis of the effect of dead loads on static arch beams[J]. Engineering Mechanics,2010,27(7): 120-125.(in Chinese))
    [9] Timoshenko S, Woinowsky-Krieger S. Theory of Plates and Shells [M]. 2nd ed. McGraw-Hill Book Company, 1959.
    [10] Takabatake H. Effects of dead loads in dynamic plate[J]. Journal of Structural Engineering, ASCE, 1992,118(1): 34-51.
    [11] ZHOU Shi-jun. Load-induced stiffness matrix of plates[J]. Canadian Journal of Civil Engineering,2002,29(1): 181-184.
    [12] 周世军. 板恒载效应的非线性分析的刚度法[J]. 振动与冲击, 2007,26(2): 33-36.(ZHOU Shi-jun. Stiffness method for nonlinear analysis of effect of dead loads on plate[J]. Journal of Vibration and Shock,2007,26(2): 33-36.(in Chinese))
    [13] 周又和. 中心荷载作用下圆薄板的固有频率-荷载关系曲线[J]. 应用力学学报, 1992,9(1): 119-123.(ZHOU You-he. Natural frequency-load characteristic relation of circular plate under a central concentrated loads[J]. Chinese Journal of Applied Mechanics,1992,9(1): 119-123.(in Chinese))
    [14] 王晋莹, 陈科进. 具有初始挠度的柔韧圆板的振动问题[J]. 应用数学和力学, 1993,14(2): 165-171.(WANG Jin-ying, CHEN Ke-jin. Vibration problems of flexible circular plates with initial deflection[J]. Applied Mathematics and Mechanics,1993,14(2):165-171.(in Chinese))
    [15] 杜国君, 张秀礼, 胡宇达. 具有初挠度夹层圆板非线性振动与解的稳定性[J]. 振动与冲击, 2007,26(11): 156-159.(DU Guo-jun, ZHANG Xiu-li, HU Yu-da. Nonlinear vibration and solution stability of circular sandwich plate with initial deflection[J]. Journal of Vibration and Shock,2007,26(11): 156-159.(in Chinese))
    [16] Szilard R. Theory and Analysis of Plates: Classical and Numerical Method [M]. Prentice-Hall, 1974.
    [17] 曹国雄. 弹性矩形薄板振动[M]. 北京: 中国建筑工业出版社, 1983.(CAO Guo-xiong. Vibration of Elastic Rectangular Thin Plate [M]. Beijing: China Architecture & Building Press, 1983.(in Chinese))
    [18] 曹志远. 板壳振动理论[M]. 北京: 中国铁道出版社, 1983.(CAO Zhi-yuan. Vibration Theory of Plates and Shells [M]. Beijing: China Railway Publishing House, 1983.(in Chinese))
    [19] 老大中. 变分法基础[M]. 北京: 国防工业出版社, 2007.(LAO Da-zhong. Fundamentals of the Calculus of Variations [M]. Beijing: National Defense Industry Press, 2007.(in Chinese))
    [20] 朱伯芳. 有限单元法原理与应用[M]. 第3版. 北京: 中国水利水电出版社, 2009.(ZHU Bo-fang. The Finite Element Method Theory and Applications [M]. 3rd ed. Beijing: China Water Power Press, 2009.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1430
  • HTML全文浏览量:  197
  • PDF下载量:  1001
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-24
  • 修回日期:  2013-08-14
  • 刊出日期:  2013-12-16

目录

    /

    返回文章
    返回