留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具有分布时滞和非线性发生率的媒介传染病模型的全局稳定性

杨亚莉 李建全 刘万萌 唐三一

杨亚莉, 李建全, 刘万萌, 唐三一. 一类具有分布时滞和非线性发生率的媒介传染病模型的全局稳定性[J]. 应用数学和力学, 2013, 34(12): 1291-1299. doi: 10.3879/j.issn.1000-0887.2013.12.008
引用本文: 杨亚莉, 李建全, 刘万萌, 唐三一. 一类具有分布时滞和非线性发生率的媒介传染病模型的全局稳定性[J]. 应用数学和力学, 2013, 34(12): 1291-1299. doi: 10.3879/j.issn.1000-0887.2013.12.008
YANG Ya-li, LI Jian-quan, LIU Wan-meng, TANG San-yi. Global Stability of a Vector-Borne Epidemic Model With Distributed Delay and Nonlinear Incidence[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1291-1299. doi: 10.3879/j.issn.1000-0887.2013.12.008
Citation: YANG Ya-li, LI Jian-quan, LIU Wan-meng, TANG San-yi. Global Stability of a Vector-Borne Epidemic Model With Distributed Delay and Nonlinear Incidence[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1291-1299. doi: 10.3879/j.issn.1000-0887.2013.12.008

一类具有分布时滞和非线性发生率的媒介传染病模型的全局稳定性

doi: 10.3879/j.issn.1000-0887.2013.12.008
基金项目: 国家自然科学基金资助项目(11071256;11171267;11301320;11371369);陕西省自然科学基础研究计划资助项目(2012JQ1019);中国博士后科学基金资助项目(2013M532016);陕西省博士后科研资助项目
详细信息
    作者简介:

    杨亚莉(1974—),女,陕西咸阳人,副教授,博士(E-mail: yylhgr@126.com);李建全(1965—),男,教授,博士(E-mail: jianq-li@263.net);刘万萌(1993—),男(E-mail: 1103016411@qq.com);唐三一(1970—),男,教授,博士(通讯作者. E-mail: sytang@snnu.edn.cn).

  • 中图分类号: O175.12; O211.9

Global Stability of a Vector-Borne Epidemic Model With Distributed Delay and Nonlinear Incidence

Funds: The National Natural Science Foundation of China(11071256;11171267;11301320;11371369);China Postdoctoral Science Foundation(2013M532016)
  • 摘要: 建立了一类具有分布时滞和非线性发生率的SIR媒介传染病模型,分析得到了决定疾病是否一致持续存在的基本再生数.而且当基本再生数不大于1时,疾病最终灭绝;当基本再生数大于1时,模型存在惟一的地方病平衡点,并且疾病一致持续存在于种群之中.通过构造Lyapunov泛函,证明了在一定条件下地方病平衡点只要存在就全局稳定.同时指出了证明地方病平衡点全局稳定时可适用的Lyapunov泛函的不惟一性.
  • [1] Ma Z E, Li J. Dynamical Modeling and Analysis of Epidemics[M]. World Scientific, 2009.
    [2] Capasso V, Serio G. A generalization of the Kermack-McKendrick deterministic epidemic model[J]. Mathematical Biosciences,1978, 42(1/2): 43-61.
    [3] Liu W M, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. Journal of Mathematical Biology, 1986, 23(2): 187-204.
    [4] Gao S J, Chen L S, Nieto J J, Torres A. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J]. Vaccine, 2006, 24(35/36): 6037-6045.
    [5] Korobeinikov A, Maini P K.  Nonlinear incidence and stability of infectious disease models[J]. Mathematical Medicine and Biology, 2005, 22(2): 113-128.
    [6] Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mountain Journal of Mathematics, 1979, 9(1): 31-42.
    [7] Xu R, Ma Z E. Stability of a delayed SIRS epidemic model with a nonlinear incidence rate[J]. Chaos Solutions and Fractals,2009, 41(5): 2319-2325.
    [8] Huang G, Takeuchi Y, Ma W B , Wei D J. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate[J]. Bulletin of Mathematical Biology, 2010, 72(5): 1192-1207.
    [9] Beretta E, Takeuchi Y. Convergence results in SIR epidemic models with varying population size[J]. Nonlinear Analysis: Theory, Method and Applications, 1997, 28(12): 1909-1921.
    [10] Takeuchi Y, Ma W B,  Beretta E. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J]. Nonlinear Analysis: Theory, Methods and Applications, 2000, 42(6): 931-947.
    [11] Nakata Y, Enatsu Y, Muroya Y. On the global stability of an SIRS epidemic model with distributed delays[J]. Discrete and Continuous Dynamical Systems, 2011(Supp): 1119-1128.
    [12] Enatsu Y, Nakata Y, Muroya Y.  Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model[J]. Nonlinear Analysis: Real World Applications, 2012, 13(5): 2120-2133.
    [13] Kuang Y. Delay Differential Equations With Applications in Population Dynamics [M]. San Diego: Academic Press, 1993.
    [14] Li J Q, Song X C, Gao F Y. Global stability of a viral infection model with delays and two types of target cells[J]. Journal of Applied Analysis and Computation, 2012, 2(3): 281-292.
  • 加载中
计量
  • 文章访问数:  1711
  • HTML全文浏览量:  170
  • PDF下载量:  1156
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-14
  • 修回日期:  2013-12-04
  • 刊出日期:  2013-12-16

目录

    /

    返回文章
    返回