[1] |
Ma Z E, Li J. Dynamical Modeling and Analysis of Epidemics[M]. World Scientific, 2009.
|
[2] |
Capasso V, Serio G. A generalization of the Kermack-McKendrick deterministic epidemic model[J]. Mathematical Biosciences,1978, 42(1/2): 43-61.
|
[3] |
Liu W M, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. Journal of Mathematical Biology, 1986, 23(2): 187-204.
|
[4] |
Gao S J, Chen L S, Nieto J J, Torres A. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J]. Vaccine, 2006, 24(35/36): 6037-6045.
|
[5] |
Korobeinikov A, Maini P K. Nonlinear incidence and stability of infectious disease models[J]. Mathematical Medicine and Biology, 2005, 22(2): 113-128.
|
[6] |
Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mountain Journal of Mathematics, 1979, 9(1): 31-42.
|
[7] |
Xu R, Ma Z E. Stability of a delayed SIRS epidemic model with a nonlinear incidence rate[J]. Chaos Solutions and Fractals,2009, 41(5): 2319-2325.
|
[8] |
Huang G, Takeuchi Y, Ma W B , Wei D J. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate[J]. Bulletin of Mathematical Biology, 2010, 72(5): 1192-1207.
|
[9] |
Beretta E, Takeuchi Y. Convergence results in SIR epidemic models with varying population size[J]. Nonlinear Analysis: Theory, Method and Applications, 1997, 28(12): 1909-1921.
|
[10] |
Takeuchi Y, Ma W B, Beretta E. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J]. Nonlinear Analysis: Theory, Methods and Applications, 2000, 42(6): 931-947.
|
[11] |
Nakata Y, Enatsu Y, Muroya Y. On the global stability of an SIRS epidemic model with distributed delays[J]. Discrete and Continuous Dynamical Systems, 2011(Supp): 1119-1128.
|
[12] |
Enatsu Y, Nakata Y, Muroya Y. Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model[J]. Nonlinear Analysis: Real World Applications, 2012, 13(5): 2120-2133.
|
[13] |
Kuang Y. Delay Differential Equations With Applications in Population Dynamics [M]. San Diego: Academic Press, 1993.
|
[14] |
Li J Q, Song X C, Gao F Y. Global stability of a viral infection model with delays and two types of target cells[J]. Journal of Applied Analysis and Computation, 2012, 2(3): 281-292.
|