留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有双噪声的随机SI传染病模型的稳定性与分岔

赵金庆 刘茂省 马扬军 王弯弯

赵金庆, 刘茂省, 马扬军, 王弯弯. 带有双噪声的随机SI传染病模型的稳定性与分岔[J]. 应用数学和力学, 2013, 34(12): 1300-1310. doi: 10.3879/j.issn.1000-0887.2013.12.009
引用本文: 赵金庆, 刘茂省, 马扬军, 王弯弯. 带有双噪声的随机SI传染病模型的稳定性与分岔[J]. 应用数学和力学, 2013, 34(12): 1300-1310. doi: 10.3879/j.issn.1000-0887.2013.12.009
ZHAO Jin-qing, LIU Mao-xing, MA Yang-jun, WANG Wan-wan. Stochastic Stability and Bifurcation of an SI Epidemic Model With Double Noises[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1300-1310. doi: 10.3879/j.issn.1000-0887.2013.12.009
Citation: ZHAO Jin-qing, LIU Mao-xing, MA Yang-jun, WANG Wan-wan. Stochastic Stability and Bifurcation of an SI Epidemic Model With Double Noises[J]. Applied Mathematics and Mechanics, 2013, 34(12): 1300-1310. doi: 10.3879/j.issn.1000-0887.2013.12.009

带有双噪声的随机SI传染病模型的稳定性与分岔

doi: 10.3879/j.issn.1000-0887.2013.12.009
基金项目: 国家自然科学基金资助项目(10901145);山西省自然科学基金资助项目(20120110021);山西省高等学校优秀青年学术带头人资助项目
详细信息
    作者简介:

    赵金庆(1988—),男,山东淄博人,硕士生(E-mail: qing630086824@126.com);刘茂省(1978—),男,山东济宁人,副教授,博士(通讯作者. E-mail: liumxsx@gmail.com).

  • 中图分类号: O29;O175.13

Stochastic Stability and Bifurcation of an SI Epidemic Model With Double Noises

Funds: The National Natural Science Foundation of China(10901145)
  • 摘要: 建立一个带有双噪声的随机SI传染病模型,运用随机平均法及非线性动力学理论对模型进行化简.通过Lyapunov指数和奇异边界理论,得到模型的局部随机稳定性和全局随机稳定性的条件.根据不变测度的Lyapunov指数和平稳概率密度,分析模型的随机分岔.结果表明,系统在随机因素作用下变得更敏感、更不稳定.
  • [1] Capasso V. Global solution for a diffusive nonlinear deterministic epidemic model[J]. SIAM Journal on Applied Mathematics,1978,35(2): 274-284.
    [2] XIAO Dong-mei, RUAN Shi-gui. Global analysis of an epidemic model with nonmonotone incidence rate[J]. Mathematical Biosciences,2007,208(2): 129-419.
    [3] ZHANG Tai-lei, TENG Zhi-dong. Global behavior and permanence of SIRS epidemic model with time delay[J]. Nonlinear Analysis: Real World Applications,2008,9(4): 1409-1424.
    [4] LI Jian-quan, MA Zhi-en, Brauer F. Global analysis of discrete-time SI and SIS epidemic models[J]. Mathematical Biosciences and Engineering,2007,4(4): 699-710.
    [5] JIANG Da-qing, SHI Ning-zhong, LI Xiao-yue. Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation[J]. Mathematical Analysis and Applications,2008,340(1): 588-597.
    [6] JIANG Da-qing, YU Jia-jia, JI Chun-yan, SHI Ning-zhong. Asymptotic behavior of global positive solution to a stochastic SIR model[J]. Mathematical and Computer Modelling,2011,54(1/2): 221-232.
    [7] YUAN Cheng-jun, JIANG Da-qing, O’Regan D, Agarwal R P. Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation[J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(6): 2501-2516.
    [8] LIU Hong, YANG Qing-shan, JIANG Da-qing. The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences[J]. Automatica,2012,48(5): 820-825.
    [9] Tornatore E, Buccellato S M, Vetro P. Stability of a stochastic SIR system[J]. Physica A,2005,354: 111-126.
    [10] Hethcote H W. Qualitative analyses of communicable disease models[J]. Mathematical Biosciences,1976,28: 335-356.
    [11] Hethcote H W. The mathematics of infectious diseases[J]. Society for Industrial and Applied Mathematics,2000,42(4): 599-653.
    [12] Khasminskii R. On the principle of averaging for It’s stochastic differential equations[J]. Kybernetika (Prague),1968,4: 260-279.
    [13] 朱位秋. 非线性随机动力学与控制——Hamilton理论系统框架[M]. 北京: 科学出版社, 2003.(ZHU Wei-qiu. Nonlinear Stochastic Dynamics and Control: Hamilton Theory System Frame[M]. Beijing: Science Press, 2003.(in Chinese))
    [14] 朱位秋. 随机平均法及其应用[J]. 力学进展, 1987,17(3): 342-352.(ZHU Wei-qiu. Stochastic averaging methods and their applications[J]. Advances in Mechanics,1987,17(3): 342-352.(in Chinese))
    [15] Lin Y K, Cai G Q. Probabilistic Structural Dynamics, Advanced Theory and Applications[M]. New York: McGraw-Hill, 1995.
    [16] Arnold L. Random Dynamical Systems [M]. New York: Springer, 1998.
  • 加载中
计量
  • 文章访问数:  1479
  • HTML全文浏览量:  124
  • PDF下载量:  1066
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-27
  • 修回日期:  2013-08-28
  • 刊出日期:  2013-12-16

目录

    /

    返回文章
    返回