[1] |
de Vogelaere R. Methods of integration which preserve the contact transformation property of the Hamiltonian equations[R]. Notre Dame: Department of Mathematics, University of Notre Dame, Report No 4, N7-ONR-43906, 1956.
|
[2] |
Ruth R. A canonical integration technique[J]. IEEE Transactions on Nuclear Science,1983,30(4): 2669-2671.
|
[3] |
FENG Kang. On difference schemes and symplectic geometry[C]// Proceedings of the 5th International Symposium on Differential Geometry and Differential Equations.Beijing, 1984: 42-58.
|
[4] |
Sanz-Serna J M, Calvo M P. Numerical Hamiltonian Problems [M]. London: Chapman and Hall Press, 1994.
|
[5] |
Lasagni F M. Canonical Runge-Kutta methods[J]. Journal of Applied Mathematics and Physis(ZAMP),1988,39(6): 952-953.
|
[6] |
Sanz-Serna J M. Runge-Kutta schemes for Hamiltonian systems[J]. BIT Numerical Mathematics,1988,28(4): 877-883.
|
[7] |
Suris Y B. On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems[C]//Filippov S S ed. Numerical Solution of Ordinary Differential Equations.Moscow: Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, 1988: 148-160.(in Russian)
|
[8] |
Burrage K, Butcher J C. Stability criteria for implicit Runge-Kutta methods[J]. SIAM Journal on Numerical Analysis,1979,16(1): 46-57.
|
[9] |
Crouzeix M. Sur la B-stabilité des méthods de Runge-Kutta[J].Numerische Mathematik,1979,32(1): 75-82.
|
[10] |
Saito S, Sugiura H, Mitsui T. Family of symplectic implicit Runge-Kutta formulae[J]. BIT Numerical Mathematics,1992,32(3): 539-543.
|
[11] |
Sanz-Serna J M, Abia L. Order conditions for canonical Runge-Kutta schemes[J]. SIMA Journal on Numerical Analysis,1991,28(4): 1081-1096.
|
[12] |
Abia L, Sanz-Serna J M. Partitioned Runge-Kutta methods for separable Hamiltonian problems[J]. Mathematics of Computation,1993,60(202): 617-634.
|
[13] |
Sun G. A simple way constructing symplectic Runge-Kutta methods[J]. Journal of Computational Mathematics,2000,18(1): 61-68.
|
[14] |
Grimm V, Scherer R. A generalized W-transformation for constructing symplectic partitioned Runge-Kutta methods[J]. BIT Numerical Mathematics,2003,43(1): 57-66.
|
[15] |
Monovasilis T, Kalogiratou Z, Simos T E. Symplectic partitioned Runge-Kutta methods with minimal phase-lag[J]. Computer Physics Communications,2010,181(7): 1251-1254.
|
[16] |
Suris Y B. On the canonicity of mappings that can be generated by methods of Runge-Kutta type for integrating system x〖DD(-1〗¨〖DD)〗=U/x[J].Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki,1989,29(2): 202-211, 317.(in Russian)
|
[17] |
Okunbor D, Skeel R D. An explicit Runge-Kutta-Nystrom method in canonical if and only if its adjoint is explicit[J]. SIAM Journal on Numerical Analysis,1992,29(2): 521-527.
|
[18] |
Ramaswami G. Perturbed collocation and symplectic RKN methods[J]. Advances in Computational Mathematics,1995,3(1/2): 23-40.
|
[19] |
Tsitouras C H. A tenth order symplectic Runge-Kutta-Nystrom method[J]. Celestial Mechanics and Dynamical Astronomy,1999,74(4): 223-230.
|
[20] |
Van de Vyrer H. A symplectic Runge-Kutta-Nystrom method with minimal phase lag[J]. Physics Letters A,2007,367(1/2): 16-24.
|
[21] |
Iserles A. Efficient Runge-Kutta methods for Hamiltonian equations[J]. Bulletin Greek Mathematical Society,1991,32: 3-20.
|
[22] |
Sun G. Construction of high order symplectic Runge-Kutta methods[J]. Journal of Computational Mathematics,1993,11(3): 250-260.
|
[23] |
Hairer E, Wanner G. Scientific notes: symplectic Runge-Kutta methods with real eigenvalues[J]. BIT Numerical Mathematics,1994,34(2): 310-312.
|
[24] |
Simos T E, Vigo-Aguiar J. Exponentially fitted symplectic integrator[J]. Physical Review E,2003,67(1): 016701.
|
[25] |
Monovasilis T, Kalogiratou Z, Simos T E. Exponentially fitted symplectic methods for the numerical integration of the Schrodinger equation[J]. Journal of Mathematical Chemistry,2005,37(3): 263-270.
|
[26] |
Tocino A, Vigo-Aguiar J. Symplectic conditions for exponential fitting Runge-Kutta-Nystrom methods[J]. Mathematical and Computer Modelling,2005,42(7/8): 873-876.
|
[27] |
Van de Vyver H. A fourth order symplectic exponentially fitted integrator[J]. Computer Physics Communications,2006,174(4): 255-262.
|
[28] |
Gladman B, Duncan M, Candy J. Symplectic integrators for long-term integrations in celestial mechanics[J]. Celestial Mechanics and Dynamical Astronomy,1991,52(3): 221-240.
|
[29] |
Kinoshita H, Yoshida H, Nakai H. Symplectic integrators and their application to dynamical astronomy[J]. Celestial Mechanics and Dynamical Astronomy,1991,50(1): 59-71.
|
[30] |
Gray S, Manolopoulos D E. Symplectic integrators tailored to the time-dependent Schrodinger equation[J]. Journal of Chemical Physics,1996,104(18): 7099-7112.
|
[31] |
Cary J R, Doxas J. An explicit symplectic integration scheme for plasma simulations[J]. Journal of Computational Physics,1993,107(1): 98-104.
|
[32] |
Dragt A J. Computation of maps for particle and light optics by scaling, splitting and squaring[J]. Physical Review Letters,1995,75(10): 1946-1948.
|
[33] |
Channell P J, Scovel C. Symplectic integration of Hamiltonian systems[J]. Nonlinearity,1990,3(2): 231-259.
|
[34] |
邢誉峰, 杨蓉. 动力学平衡方程的Euler中点辛差分求解格式[J]. 力学学报, 2007,39(1): 100-105.(XING Yu-feng, YANG Rong. Application of Euler midpoint symplectic integration method for the solution of dynamic equilibrium equations[J]. Chinese Journal of Theoretical and Applied Mechanics,2007,39(1): 100-105.(in Chinese))
|
[35] |
Bathe K J, Wilson E L. Numerical Methods in Finite Element Analysis [M]. New Jersey, Englewood Cliffs: Prentice-Hall, 1976.
|
[36] |
Hughes T J R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[M]. New Jersey, Englewood Cliffs: Prentice-Hall, 1987.
|