留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声子晶体理论的弹性地基梁的振动特性研究

陈启勇 胡少伟 张子明

陈启勇, 胡少伟, 张子明. 基于声子晶体理论的弹性地基梁的振动特性研究[J]. 应用数学和力学, 2014, 35(1): 29-38. doi: 10.3879/j.issn.1000-0887.2014.01.004
引用本文: 陈启勇, 胡少伟, 张子明. 基于声子晶体理论的弹性地基梁的振动特性研究[J]. 应用数学和力学, 2014, 35(1): 29-38. doi: 10.3879/j.issn.1000-0887.2014.01.004
CHEN Qi-yong, HU Shao-wei, ZHANG Zi-ming. Research on the Vibration Property of the Beam on Elastic Foundation Based on the PCs Theory[J]. Applied Mathematics and Mechanics, 2014, 35(1): 29-38. doi: 10.3879/j.issn.1000-0887.2014.01.004
Citation: CHEN Qi-yong, HU Shao-wei, ZHANG Zi-ming. Research on the Vibration Property of the Beam on Elastic Foundation Based on the PCs Theory[J]. Applied Mathematics and Mechanics, 2014, 35(1): 29-38. doi: 10.3879/j.issn.1000-0887.2014.01.004

基于声子晶体理论的弹性地基梁的振动特性研究

doi: 10.3879/j.issn.1000-0887.2014.01.004
详细信息
    作者简介:

    陈启勇(1986—),男,南京人,博士生(E-mail: chenqiyong@outlook.com);

  • 中图分类号: O422.6

Research on the Vibration Property of the Beam on Elastic Foundation Based on the PCs Theory

  • 摘要: 荷载影响结构的振动特性,引起抗振性能的变化.借助声子晶体理论,研究弹性地基梁的带隙特性,建立了轴向力作用时Winkler地基上声子晶体Euler梁弯曲振动模型,采用改进的传递矩阵法,计算出梁的能带结构,判断出能带结构的变化趋势.研究表明,轴力改变能带结构,带隙范围发生变化.拉力提升带隙,但地基带隙保持不变;压力降低带隙频率,地基带隙随着压力的增加而减小.同时,进行Euler模型的数值模拟,仿真的结果与理论值基本吻合.通过轴力可以调节带隙的频率范围,达到抗振、减振的效果.
  • [1] McLean D J. Solar Radiophysics [M]. London: Cambridge University Press, 1985.
    [2] HUANG Guang-li. Turbulent spectrum of Alfvén waves excited by a kinetic instability for explaining the modulations with multi-timescales in solar flares[J]. Astrophysics and Space Science,2009, 321(2): 79-89.
    [3] Aschwanden M J. Particle Acceleration and Kinematics in Solar Flares [M]. Netherlands: Springer, 2002: 187-227.
    [4] Sakai J I, Kitamoto T, Saito S. Simulation of solar type III radio bursts from a magnetic reconnection[J]. The Astrophysical Journal Letters,2005, 622(2): 157-160.
    [5] Grechnev V V, White S M, Kundu M R. Quasi-periodic pulsations in a solar microwave burst[J]. Astrophysical Journal,2003, 588(2): 1163-1175.
    [6] HUANG Guang-li, JI Hai-sheng. Radio, hard X-ray, EUV and optical study of september 9, 2002 solar flare[J]. Astrophysics and Space Science,2006, 301(1/4): 65-71.
    [7] MO Jia-qi, LIN Su-rong. The homotopic mapping solution for the solitary wave for a generalized nonlinear evolution equation[J]. Chin Phys B,2009, 18(9): 3628-3631.
    [8] MO Jia-qi. Solution of travelling wave for nonlinear disturbed long-wave system[J].Commun Theor Phys,2011, 55(3): 387-390.
    [9] MO Jia-qi, CHEN Xian-feng. Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation[J]. Chin Phys B,2010, 19(10): 100203.
    [10] MO Jia-qi, LIN Wan-tao, WANG Hui. A class of homotopic solving method for ENSO model[J]. Acta Math Sci,2009, 29(1): 101-110.
    [11] 姚静荪, 欧阳成, 陈丽华, 莫嘉琪. 非线性扰动耦合Schrodinger系统激波的近似解法[J]. 应用数学和力学, 2012, 33(12): 1477-1486.(YAO Jing-sun, OUYANG Cheng, CHEN Li-hua, MO Jia-qi. Approximate solving method of shock for nonlinear disturbed coupled Schrdinger system[J]. Applied Mathematics and Mechanics,2012, 33(12): 1477-1486.(in Chinese))
    [12] 李晓静. 厄尔尼诺大气物理机制的周期解[J]. 物理学报, 2008, 57(9): 5366-5368.(LI Xiao-jing. The periodic solutions of EI Nio mechanism of atmospheric physics[J]. Acta Physica Sinica,2008, 57(9): 5366-5368.(in Chinese))
    [13] Tang X H, LI Xiao. Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential[J]. Nonlinear Analysis: Theory, Methods & Applications,2009, 71(3/4): 1124-1132.
    [14] Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations [M]. Berlin: Springer, 1977.
    [15] Kivelson M G, Russell C T. Introduction to Space Physics [M]. Cambridge, New York: Cambridge University Press, 1995.
  • 加载中
计量
  • 文章访问数:  1240
  • HTML全文浏览量:  134
  • PDF下载量:  1099
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-26
  • 修回日期:  2013-09-03
  • 刊出日期:  2014-01-15

目录

    /

    返回文章
    返回