留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gauss白噪声激励下分数阶导数系统的非平稳响应

李伟 赵俊锋 李瑞红 N·特里索维奇

李伟, 赵俊锋, 李瑞红, N·特里索维奇. Gauss白噪声激励下分数阶导数系统的非平稳响应[J]. 应用数学和力学, 2014, 35(1): 63-70. doi: 10.3879/j.issn.1000-0887.2014.01.007
引用本文: 李伟, 赵俊锋, 李瑞红, N·特里索维奇. Gauss白噪声激励下分数阶导数系统的非平稳响应[J]. 应用数学和力学, 2014, 35(1): 63-70. doi: 10.3879/j.issn.1000-0887.2014.01.007
LI Wei, ZHAO Jun-feng, LI Rui-hong, Natasa Trisovic. Non-Stationary Response of a Stochastic System With Fractional Derivative Damping Under Gaussian White-Noise Excitation[J]. Applied Mathematics and Mechanics, 2014, 35(1): 63-70. doi: 10.3879/j.issn.1000-0887.2014.01.007
Citation: LI Wei, ZHAO Jun-feng, LI Rui-hong, Natasa Trisovic. Non-Stationary Response of a Stochastic System With Fractional Derivative Damping Under Gaussian White-Noise Excitation[J]. Applied Mathematics and Mechanics, 2014, 35(1): 63-70. doi: 10.3879/j.issn.1000-0887.2014.01.007

Gauss白噪声激励下分数阶导数系统的非平稳响应

doi: 10.3879/j.issn.1000-0887.2014.01.007
基金项目: 国家自然科学基金(11302157;11202155);中央高校基本科研业务费专项资金(K5051370008);中国与塞尔维亚科技合作项目(2-14)
详细信息
    作者简介:

    李伟(1977—),女,辽宁葫芦岛人,副教授,博士(通讯作者. E-mail: liweilw@mail.xidian.edu.cn);

  • 中图分类号: O324

Non-Stationary Response of a Stochastic System With Fractional Derivative Damping Under Gaussian White-Noise Excitation

Funds: The National Natural Science Foundation of China(11302157;11202155)
  • 摘要: 研究了Gauss(高斯)白噪声激励下具有分数阶导数阻尼的非线性随机动力系统的非平稳响应.应用等价线性化方法将非线性系统转化为等价的线性系统,之后采用随机平均法获得系统响应满足的FPK(Fokker-Planck-Kolmogorov)方程,其中分数阶导数近似为一个周期函数.使用Galerkin方法求解FPK方程进而得到系统的近似非平稳响应.数值结果验证了方法的正确性和有效性.
  • [1] Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology,1983,27(3): 201-210.
    [2] Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structure[J]. American Institute of Aeronautics and Astronautics Journal,1985,23(6): 918-925.
    [3] Gaul L, Klein P, Kemple S. Impulse response function of an oscillator with fractional derivative in damping description[J]. Mechanics Research Communications, 1989,16(5): 297-305.
    [4] Makris N, Constaninou M C. Spring-viscous damper systems for combined seismic and vibration isolation[J]. Earthquake Engineering and Structural Dynamics, 1992,21(8): 649-664.
    [5] Spanos P D, Zeldin B A. Random vibration of system with frequency-dependent parameters or fractional derivatives[J]. Journal Engineering Mechanics,1997,123(3): 290-292.
    [6] Drozdov D. Fractional oscillator driven by a Gaussian noise[J]. Physica A: Statistical Mechanics and Its Application,2007,376(15): 237-245.
    [7] Huang Z L, Jin X L. Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative[J]. Journal of Sound and Vibration,2009,319(3/5): 1121-1135.
    [8] Chen L C, Zhu W Q. First passage failure of SDOF nonlinear oscillator with lightly fractional derivative damping under real noise excitation[J]. Probabilistic Engineering Mechanics, 2011,26(2): 208-214.
    [9] Chen L C, Zhu W Q. Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations[J]. International Journal of Non-Linear Mechanics, 2011,46(10): 1324-1329.
    [10] Hu F, Chen L C, Zhu W Q. Stationary response of strongly non-linear oscillator with fractional derivative damping under bounded noise excitation[J]. International Journal of Non-Linear Mechanics, 2012,47(10): 1081-1087.
    [11] Spanos P D, Evangelatos G I. Response of a non-linear system with restoring force governed by fractional derivatives—time domain simulation and statistical linearization solution[J]. Soil Dynamics and Earthquake Engineering,2010,30(9): 811-821.
    [12] Paola M D, Failla G, Pirrotta A. Stationary and non-stationary stochastic response of linear fractional viscoelastic systems[J]. Probabilistic Engineering Mechanics, 2012,28: 85-90.
    [13] 朱位秋. 非线性随机动力学与控制─—Hamilton理论系统框架[M]. 北京: 科学出版社, 2003. (ZHU Wei-qiu. Nonlinear Stochastic Dynamics and Control: Hamilton Theory System Frame [M]. Beijing: Science Press, 2003.(in Chinese))
    [14] 欧阳怡, 缪经良, 庄表中. 非线性系统随机振动分析方法的若干问题[J]. 振动工程学报, 1988,1(3): 68-75.(OUYANG Yi, MIAO Jing-liang, ZHUANG Biao-zhong. Some problem of non-linear random vibration analysis[J]. Journal of Vibration Engineering,1988,1(3): 68-75.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1633
  • HTML全文浏览量:  218
  • PDF下载量:  995
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-03
  • 修回日期:  2013-10-27
  • 刊出日期:  2014-01-15

目录

    /

    返回文章
    返回